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Abstract

In the Master’s thesis of the author, we investigate certain aspects of gravitational physics that

emerge from stochastic toy models of holographic gauge theories. We begin by reviewing field

theory thermodynamics, black hole thermodynamics and how the AdS / CFT correspondence

provides a link between the two. We then study a nonlinear evolution equation for the energy

density that was derived last year from a random walk governed by the density of states. When

one dimension is non-compact, a variety of field theories produce long lived plasma balls that are

dual to black holes. This is due to a trapping phenomenon associated with the Hagedorn density of

states. With the help of numerical and mathematical results, we show that problems arise when two

or more dimensions are non-compact. A natural extension of our model involves a system of partial

differential equations for both energy and momentum. Our second model is shown to have some

desired, but also some undesired properties, such as a potential disagreement with hydrodynamics.
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I. INTRODUCTION

This thesis deals with a recently proposed toy model for the dynamics of energy distribu-

tions in thermal field theories. These include the conformal field theories and deformations

of them that have gravity duals according to the AdS / CFT correspondence [1]. As argued

in [2], our model suggests that certain important aspects of gravitational physics emerge for

thermodynamic reasons. From this perspective, it is related to the ideas of entropic gravity

in [3–6].

FIG. 1: By focusing on two adjacent sites in this energy distribution, one may check

whether the system favours a homogeneous or an inhomogeneous state. The properties of

this entropic evolution are determined by the local density of states.

Before deriving the equations of our model, it is helpful to consider Figure 1 — energy

quanta that randomly hop between sites in a line. To each site, we ascribe a density of

states ρ(n) counting the number of ways for it to have n units of energy. The growth of this

function lets us determine which scenario is more likely: site 1 giving a quantum to site 2 or

site 2 giving a quantum to site 1. Asking this question is equivalent to comparing the sizes

of ρ(n1−1)ρ(n2 +1) and ρ(n1 +1)ρ(n2−1). Positing a form log ρ(n) ∝ nα, we see that site 1

is most likely to give up energy when α < 1 and site 2 is most likely to give up energy when

α > 1. Thus, we see that this random walk leads to diffusion when the density of states

is log-concave and clustering when the density of states is log-convex. In the diffusion case

e.g., a uniform energy distribution is the inevitable final state, even when the microscopic

physics are completely reversible. Special attention is paid to the Hagedorn phase α = 1

which is almost completely static.
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Even though the essence of our model is this simple statement, it takes the form of a

nonlinear partial differential equation that accepts a ρ(E) function as input. A ubiquitous

density of states, which we derive using the AdS / CFT correspondence, consists of four

phases. One of the narrow phases is omitted throughout this thesis for simplicity. The three

that are left consist of a diffusive phase at high energies, a Hagedorn phase at intermediate

energies and another diffusive phase at low energies. Roughly speaking, these respectively

correspond to a black hole forming, living for a long time and ultimately evaporating away.

Less ambitiously, we may say that they correspond to balls of plasma in a purely field

theoretic setting [7]. We derive rigorous bounds on the decay times for these objects in our

model and compare them to the hadronization times in [7]. We find that our times are

longer in one dimension and much shorter in higher dimensions.

To address these problems, a second model is proposed that treats momentum as another

quantity that moves stochastically through a lattice. Since the second model is much more

complicated, the discussion of its properties remains at a speculative level. Even though

evolution equations for energy and momentum sound similar to the spirit of hydrodynamics,

we compare our equations to the hydro equations and only find agreement in the crudest

approximation. Despite taking the form of classical PDEs, we hasten to emphasize that

our models include quantum effects when functions like the density of states are chosen

appropriately.

This thesis begins with theoretical background in Chapter 2. This chapter focuses on the

tools needed to derive thermodynamic quantities via the AdS / CFT correspondence and

contains some lengthy derivations. The main model is derived afterward in Chapter 3. In

Chapter 4, various results from the mathematical literature on nonlinear diffusion equations

are applied to our PDE and used to derive the time scales for black hole evaporation. The

suspicious features of our results are discussed in this chapter as well. Chapter 5 introduces

numerical methods that are suitable for our PDE and uses them to check most of our results.

The method chosen for most problems is the implicit Crank-Nicolson approach. Chapters

6 and 7 contain the newer results that were derived after [2] appeared. Their focus is the

extension of our model that includes momentum. Just as our first model depends on a

density of states, our second model depends on a momentum restricted density of states.

An expression for this quantity is derived that allows a small amount of numerical work to

be done. Code forming the basis for all of our simulations is presented in the appendix.
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II. ASPECTS OF HOLOGRAPHY

Of all the conjectures that have been made about quantum gravity, the one that has had

the largest impact so far is the AdS / CFT correspondence proposed by Juan Maldacena

[1]. Known by various other names like holography or gauge-gravity duality, it states that

string theory in anti-de Sitter space is equivalent to a conformally invariant quantum field

theory living on the boundary of that space. Questions about string theory can therefore be

recast in the language of quantum field theory without gravity. Deriving the evidence for

the AdS / CFT correspondence would exceed the scope of this thesis [8]. Instead, we will

explore certain dynamical processes that can be best understood with the correspondence.

The effect that will demand most of our attention is black hole evaporation. Hawking’s

derivation of black hole evaporation is one of the most successful uses of quantum field

theory in curved spacetime and any eventual theory of quantum gravity is expected to

account for it. Many studies of Hawking radiation have been done using string theory and

the AdS / CFT correspondence in particular [9–12].

Naturally, the first such studies focused on the original version of the correspondence in

which the background is AdS5 × S5 [1]. If one writes the six-dimensional Euclidean Dirac

matrices as

Γi =

 0 C̄i

Ci 0

 i ∈ {1, . . . , 6} ,

the conformal field theory is specified by the Lagrangian [13]

L = − 1

2g2
YM

∫
R3

1

2
Tr
(
FµνF

µν + 2DµφiD
µφi − [φi, φj][φ

i, φj]
)

+Tr
(
λ̄σµDµλ− Ciλ[φi, λ]− C̄iλ̄[φi, λ̄]

)
dx . (1)

Typically the gauge group is U(N) or SU(N) meaning that the scalars, spinors and vectors

that show up are really N × N matrices consisting of those types of fields. This is called

the N = 4 Super Yang-Mills theory or sometimes the field theory of D3-branes. A less than

encouraging fact about string theory is that AdS5 × S5 is far from the only background we

need to consider. There is really a whole landscape of vacua whose boundary field theories

may look very different. Indeeed CFT duals have been proposed for AdS4 × CP3 [14],

AdS3 × S3 × T4 [15], AdS3 × S3 × S3 × S1 [16] and many others.

Calculations involving these theories are difficult. Even showing that (1) has conformal

symmetry is not trivial. Something that allows us to explore Hawking’s process from the
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holographic viewpoint without choosing a specific Lagrangian is the intimate connection

between black holes and thermodynamics.

A. Thermodynamics

A number of different field theories have the same thermodynamic potentials. A useful

example of this appears in a conformal field theory. Neglecting the Casimir effect, energy

and entropy are both extensive so they must be proportional to the volume. A conformal

theory has no intrinsic scale so the only dimensionful quantity that can multiply this volume

is the temperature. This leads to the expressions E ∝ V T d+1 and S ∝ V T d. Substituting

them into eachother yields

S ∝ V
1
d+1E

d
d+1 . (2)

The density of states will turn out to play a fundamental role in our model so we will

sometimes exponentiate this expression.

In the calculations that follow we will see some situations in which this formula for the

entropy does not hold. In general, the rule is that (2) becomes true for non-conformal

theories if the energy is much larger than any other scale. Different low energy behaviours

can be introduced if one compactifies a CFT like (1) on a sphere.

1. In free field theory

An exercise done in [17] is finding the partition function of a free field theory. Starting

with the fact that E = p in a massless theory, Z∗(p) = 1 + e−βp is the contribution of a

single fermionic mode and Z(p) = 1 + e−βp + e−2βp + · · · =
(
1− e−βp

)−1
is the contribution

of a single bosonic mode. Using s∗ and s for the number of internal states, the partition

function is given by

Z =
∏
p

Z(p)sZ∗(p)s
∗
.

If we take the log, the product turns into a sum and if we take the momentum spectrum

to be continuous, the sum turns into an integral. Remembering the integration measure for
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momentum space, we have

logZ ≈
∫
Rd
s∗ log

(
1 + e−βp

)
− s log

(
1− e−βp

) V dp

(2π)d

=
dωdV

(2π)d

∫ ∞
0

s∗ log
(
1 + e−βp

)
− s log

(
1− e−βp

)
pd−1dp

=
d!ωdV

(2πβ)d
[sζ(d+ 1) + s∗ζ∗(d+ 1)]

≡ AV

βd
. (3)

Here, ζ(σ) =
∑∞

n=1
1
nσ

is the Riemann zeta function, ζ∗(σ) =
∑∞

n=1
(−1)n−1

nσ
is the alternating

zeta function and ωd is the volume of a unit ball in Rd. We may now use S = d
dT

(T logZ) and

E = T 2 d
dT

(logZ) to show that (2) holds with a proportionality constant of
[

(d+1)d+1

dd
A
] 1
d+1

.

If one is interested in the density of states, the exponential of this entropy is certainly

the first term in ρ(E). However, there are an infinite number of other terms that come from

the differences between the canonical and microcanonical ensembles. The second term is a

standard result that comes from treating Z(β) as the Laplace transform of ρ(E). Performing

a saddle point approximation,

ρ(E) =
1

2π

∫ ∞
−∞

Z(iβ)eiβEdβ

≡ 1

2π

∫ ∞
−∞

ef(iβ)dβ

∼ 1

2π

∫ ∞
−∞

ef(iβ0)−β
2

2
f ′′(iβ0)dβ

=
1√

2πf ′′(iβ0)
ef(iβ0) .

The higher asymptotic terms cannot be found in the same way because the integral of

ef(iβ0)−β
2

2
f ′′(iβ0)−iβ

3

6
f ′′′(iβ0) has no closed form solution. Instead, powers of β after the first

two must be Taylor expanded again so that the above becomes

ρ(E) ∼ 1

2π

∫ ∞
−∞

ef(iβ0)−β
2

2
f ′′(iβ0)

(
1− iβ

3

6
f ′′′(iβ0)− β6

72
f ′′′(iβ0)2 + . . .

)
(

1 +
β4

24
f ′′′′(iβ0) +

β8

1152
f ′′′′(iβ0)2 + . . .

)
. . . dβ .

These calculations require us to consider an ever-growing number of ways in which a power

of β can be made. Nevertheless, this method is still practical for finding the third term in
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ρ(E) and the resulting expression is

ρ(E) ∼ 1√
2π

(
d

(d+ 1)d+1
AV E−d−2

) 1
2(d+1)

exp

[(
(d+ 1)d+1

dd
AV Ed

) 1
d+1

− (d+ 2)(2d+ 1)

24(d+ 1)

(
dAV Ed

)− 1
d+1

]
. (4)

In [17], (4) is found in a different way. The inverse Laplace transform of Z(β) is found

exactly via a Hankel contour but as a Taylor series, not an asymptotic series. From this

series

ρ(E) ∼
∞∑
j=1

(AV )jEdj−1

j!(dj − 1)!
, (5)

the first three asymptotic terms are picked off. An advantage of this is that (5) can be

compared to a recent expression for the d = 1 density of states due to Loran, Sheikh-Jabbari

and Vincon [18]:

ρ(E) ∼ πcV

3

I1

(√
2πcV E/3

)
√

2πcV E/3
. (6)

Neither is a generalization of the other because d is arbitrary in (5) and the interactions are

arbitrary in (6).

In the partition function we have constructed, the β variable is conjugate to the energy.

There are also conjugate variables associated with each momentum direction. Something

special that we can do in 1 + 1 dimensions is combine these into a complex number. Let p

be a positive momentum. If there are N excitations of p and Ñ excitations of −p, this state

has an energy of p(N + Ñ) and a momentum of p(N − Ñ). Therefore, generalized partition

functions we can write down are:

Z∗(p) =
1∑

N=0

1∑
Ñ=0

e−pV τ2(N+Ñ)+pV iτ1(N−Ñ) =
(
1 + e−pV (τ2−iτ1)

) (
1 + e−pV (τ2+iτ1)

)
Z(p) =

∞∑
N=0

∞∑
Ñ=0

e−pV τ2(N+Ñ)+pV iτ1(N−Ñ) =
(
1− e−pV (τ2−iτ1)

)−1 (
1− e−pV (τ2+iτ1)

)−1
.
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Taking the product of Z(p)sZ∗(p)s
∗

over all positive momenta, we have

logZ ≈
∫ ∞

0

s∗
[
log
(
1 + e−pV (τ2−iτ1)

)
+ log

(
1 + e−pV (τ2+iτ1)

)]
−s
[
log
(
1− e−pV (τ2−iτ1)

)
+ log

(
1− e−pV (τ2+iτ1)

)] V dp

2π

=
1

2π

(
1

τ2 − iτ1

+
1

τ2 + iτ1

)
[sζ(2) + s∗ζ∗(2)]

= −
=
(

1
τ

)
π

[sζ(2) + s∗ζ∗(2)]

= −
π=
(

1
τ

)
6

(
s+

s∗

2

)
. (7)

The dimensionless number τ = τ1 + iτ2 is called the modular parameter. If τ ≡ iβ
V

, (7)

becomes the regular partition function (3). The quantity c ≡ s + s∗

2
appearing in (7) is

central charge that we would use in (6) if we wanted to apply it to a free theory.

2. In string theory

The worldsheet theory of a string can be regarded as a conformal field theory in 1 + 1

dimensions. However, S ∝
√
E would not be correct for a macroscopic observer who has

different notions of energy and dimensionality. The worldsheet Lagrangian for a supersym-

metric string theory in flat space is

L = − 1

4πα′

∫ 2π

0

∂aX
µ∂aXµ − iΨ̄µγa∂aΨµdσ1

= − 1

2πα′

∫ 2π

0

2∂Xµ∂̃Xµ − iψµ∂̃ψµ − iψ̃µ∂ψ̃µdσ1 . (8)

In the second form we have split each Dirac spinor field into two Majorana spinor fields.

We have also written derivatives with respect to σ± = σ0 ± σ1 as ∂ and ∂̃. What makes

this different from a usual quantum field theory is that the D scalar fields Xµ can be

interpreted as positions in a D-dimensional target space. The worldsheet energy comes from

σa 7→ σa + δσa but the energy we should use for counting states is the conserved quantity

associated with Xµ 7→ Xµ+δXµ. The worldsheet has SO(1, 1) Lorentz symmetry regardless

of how many fields there are, but the SO(D − 1, 1) Lorentz symmetry of the target space

is more sensitive. To survive quantization it requires that D = 10 [13]. If we had left the

fermions out of (8) to construct bosonic string theory, the same calculation would tell us

that D = 26.
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To calculate the free energy of a gas of strings, we will begin in the same way as before.

F =
1

β

∫
RD−1

∑
m

log
(

1− e−β
√
p2+m2

)
−
∑
m∗

log
(

1 + e−β
√
p2+m∗2

) V dp

(2π)D−1

= − 1

β

∞∑
n=1

∫
RD−1

∑
m

1

n
e−βn
√
p2+m2 −

∑
m∗

(−1)n

n
e−βn
√
p2+m∗ V dp

(2π)D−1

This expression has a sum over the masses of bosons and a sum over the masses of fermions.

To arrive at (3), we set these masses to zero and replaced the sums by degeneracy factors.

This was valid because the masses became negligible in the high temperature limit. The

high temperature limit of a string theory is different because it supports arbitrarily large

masses. To continue, we will use the trick∫ ∞
0

e−
a2s
2
− b

2

2s
ds√
s

=

√
2π

a
e−ab

to rewrite the free energy density.

F

V
= −

∞∑
n=1

∫ ∞
0

∫
RD−1

∑
m

e−
β2n2s

2
− p

2+m2

2s − (−1)n
∑
m∗

e−
β2n2s

2
− p

2+m∗2
2s

dp

(2π)D−1

ds√
2πs

= −
∞∑
n=1

∫ ∞
0

e
− β2n2

4πα′τ2

[∑
m

e−πτ2α
′m2 − (−1)n

∑
m∗

e−πτ2α
′m∗2

]
(4π2α′τ2)−

D
2

dτ2

τ2

(9)

Above, we have made the substitution τ2 = 1
2πα′s

. To proceed further, we need to know the

mass spectrum of our theory.

For concreteness we will work in Type II which is a theory of closed strings. This is

natural because evidence of the AdS / CFT correspondence was first discovered with Type

IIB string theory [1]. Very little would change if we used Type I or heterotic strings. The

mode expansions for the scalar fields are identical to the ones that describe the closed bosonic

string:

Xµ(σ0, σ1) = xµ + α′pµ
σ+ + σ−

2
+ i

√
α′

2

∑
n6=0

1

n

(
α̃µne

−inσ+ + αµne
−inσ−

)
.

For the closed superstring, the left and right movers (ψ and ψ̃) are independent and have

the mode expansions

ψµ(σ0, σ1) =
√
α′
∑
r∈Z+v

bµr e
irσ+

ψ̃µ(σ0, σ1) =
√
α′
∑
r∈Z+v

b̃µr e
−irσ− .
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Since fermions can have two different types of boundary conditions, the parameter v ∈
{

0, 1
2

}
denotes which one we are using. For Ramond fermions, which are periodic, v = 0. For Neveu-

Schwarz fermions which are antiperiodic, v = 1
2
. The creation and anhilation operators above

obey the relations [19]

[αµm, α
ν
n] = mηµνδm+n,0 = [α̃µm, α̃

ν
n]

{bµr , bνs} = ηµνδr+s,0 = {b̃µr , b̃νs} .

To build up the spectrum from this, we need to consider gauge symmetries. The action (8)

came from a more general action in which the worldsheet metric was dynamical. Choosing

gab = ηab restricts the physical Hilbert space to only those states which are anhilated by the

Virasoro generators :

Lm =
1

2

∑
n∈Z

: αm−n · αn : +
1

4

∑
r∈Z+v

(2r −m) : bm−r · br : −aδm,0

Gr =
∑
n∈Z

αn · br−n .

Analogous expressions hold for L̃m and G̃r. Like D, the normal ordering constant a = v

is an anomaly that can be fixed by demanding Lorentz invariance [19]. We may use the

relativistic dispersion relation, the mode expansions and the Virasoro generators to write

down a formula for the mass operator.

m2 = −pµpµ

= − 2

α′
α0 · α0

= − 2

α′

[
L0 −

∑
n>0

α−n · αn −
∑
r>v

rb−r · br + a

]

=
2

α′

[∑
n>0

α−n · αn +
∑
r>v

rb−r · br − a

]
(10)

We must have m2 = m̃2. This translates into a condition known as level matching requiring

every state to have the same number of left and right moving excitations. Despite accounting

for a gauge symmetry in this way, the action (8) still has some gauge symmetry left. A

common technique for dealing with this redundancy is fixing the lightcone gauge. This

essentially means that any Lorentz index µ running from 0 to D−1 becomes a regular index

i running from 1 to D − 2 [19].
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We now have everything we need to derive the massless spectrum of Type II string theory.

In typical examples of a Fock space, the ground state is unique. It is a singlet with respect to

any symmetry group of interest and denoted most often by |0〉. This is not the case for the

superstring. For Ramond fermions, the operators bi0 commute with m2 meaning that many

states have zero mass. This degenerate ground state in fact transforms as a spinor in ten

dimensions. Moreover it can be split into two chiralities |+〉 and |−〉. This is different from

four dimensions which would make the split into Weyl spinors inconsistent with the split

into Majorana spinors that we have already performed [13]. For Neveu-Schwarz fermions,

the lowest lying state has negative m2. However, one of the advantages of the superstring

is that it allows us to avoid this tachyon and start at the massless states. These are also

degenerate and are denoted by bi− 1
2

|0〉. Even though b is an anticommuting operator for

the worldsheet, the i index here makes this a vector particle in the target space. We have

shown that massless R states are spacetime fermions while massless NS states are spacetime

bosons. The choice between R and NS can be made for the left and right movers separately.

This means that Type II string theories have four sectors [19].

(ṽ, v) Type IIA Type IIB

R-R (0, 0) |−〉 ⊗ |+〉 |+〉 ⊗ |+〉

NS-NS
(

1
2
, 1

2

)
b̃i− 1

2

|0〉 ⊗ bi− 1
2

|0〉 b̃i− 1
2

|0〉 ⊗ bi− 1
2

|0〉

NS-R
(

1
2
, 0
)
b̃i− 1

2

|0〉 ⊗ |+〉 b̃i− 1
2

|0〉 ⊗ |+〉

R-NS
(
0, 1

2

)
|−〉 ⊗ bi− 1

2

|0〉 |−〉 ⊗ bi− 1
2

|0〉

(11)

Each sector is 64-fold degenerate.

Our expression for the free energy density has terms like e−πτ2α
′m2

summed over masses.

These sums look like familiar partition functions if we substitute (10) in for m2. Going

back to (9), it is almost correct to replace the term in square brackets with 64Z0,0(τ2) +

64Z 1
2
, 1
2
(τ2)− 128(−1)nZ0, 1

2
(τ2). In the notation being used

Zṽ,v = e2(v+ṽ)πτ2

 ∑
{N i

n,Ñ
i
n}

exp

(
−2πτ2

8∑
i=1

∞∑
n=1

n
(
N i
n + Ñ i

n

))
∑
{M i

r}

exp

(
−2πτ2

8∑
i=1

∞∑
r=v+1

rM i
r

)
∑
{M̃ i

r}
exp

(
−2πτ2

8∑
i=1

∞∑
r=ṽ+1

rM̃ i
r

) , (12)
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N i
n and Ñ i

n are bosonic occupation numbers while M i
r and M̃ i

r are fermionic occupation

numbers. Accounting for level matching is the one correction that needs to be made. This

can be done by inserting a Kronecker delta

δL,R =

∫ 1
2

− 1
2

e2πiτ1(L−R)dτ1

where L =
∑

i,n nÑ
i
n +

∑
i,r rM̃

i
r and R =

∑
i,n nN

i
n +

∑
i,r rM

i
r are the left and right

excitations respectively. Multiplying this by (12), we see that the quantity being integrated

is nothing but the generalized partition function for 8 fermions and 8 bosons. Rewriting (9),

F

V
= −

∞∑
n=1

∫ ∞
0

∫ 1
2

− 1
2

e
− β2n2

4πα′τ2 64ZB(τ)8
[
ZR(τ)8 + ZNS(τ)8 − 2(−1)n

√
ZR(τ)ZNS(τ)

8
]

(4π2α′τ2)−5 dτ1dτ2

τ2

. (13)

In terms of our old notation, ZB(τ) = Z(τ) while ZR(τ) and ZNS(τ) approach Z∗(τ) in the

small τ limit.

Our goal is to investigate the high temperature limit of (13). Since this corresponds to

β → 0, the integral is dominated by the n = 1 term of the sum and the small τ limits of the

worldsheet partition functions. A curious fact about string theories is that at a high enough

temperature, called the Hagedorn temperature TH, the free energy density diverges. We will

solve for βH. This can be done by looking at any one of the four terms in the integrand of

(13). Substituting the generalized partition function (7), the function we are integrating is

64e
− β2

4πα′τ2 e−2π=( 1
τ ) (4π2α′τ2)−5

τ2

.

The value of βH is reached when the overall exponent is zero. This means

β2
H = 8π2α′

τ 2
2

τ 2
1 + τ 2

2

≈ 8π2α′ . (14)

The partition function for a system first diverges when the density of states becomes expo-

nential and the decay of the Boltzmann factor can no longer overpower such growth. This

is equivalent to saying that S ∝ E. The proportionality constant can be read off from (14)

because β = dS
dE

must give βH. The result of this, in contrast to (2) is:

S = 2π
√

2α′E . (15)
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B. Black holes

It is clear how entropy arises in the field theories we have discussed. If we only know

the energy E of a field, the corresponding ensemble of particles can be in any one of ρ(E)

microstates contributing to our lack of knowledge about the system. Microstates of this

form do not appear to be present for black holes. Classically, one can learn everyting about

a black hole from just three numbers: mass, charge and angular momentum. The discovery

that black holes have entropy as well, has led to some of the deepest results in theoretical

physics [20].

1. Useful metrics

Black hole metrics in arbitrary dimension have seen increasing interest since the discovery

of the AdS / CFT correspondence [21]. Most authors take the Einstein equations to be

fundamental so that they read

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν (16)

regardless of how many dimensions there are. The same cannot be said of the Newtonian

limit. If (16) describes the full theory of gravity in d + 1 dimensions, one can show that

dimension dependent prefactors necessarily appear in the Poisson equation [21]:

∆Φ = 8πG
d− 2

d− 1
ρ

= 8πG
d− 2

d− 1
Mδ(0) . (17)

The second form above specializes to a point mass of M .

The neutral, irrotational black hole in arbitrary dimension is called the Schwarzschild-

Tangherlini solution.

ds2 = −
(

1− µ

rd−2

)
dt2 +

(
1− µ

rd−2

)−1

dr2 + r2dΩ2
d−1 (18)

We will take this opportunity to review some of the basic properties that black hole metrics

should have.

1. It can be checked that (18) solves Einstein’s equation with no cosmological constant

and no stress-energy tensor. In fact, it is the unique spherically symmetric and time
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independent solution. The requirement that it be time independent is redundant if

d = 3.

2. It is clear that (18) is asymptotically flat. Therefore, the notion of “escaping” from a

potential well in this metric is well defined.

3. It is also clear that beyond a certain radius, one can no longer escape. Far away from

the origin, t is timelike and r is spacelike but this reverses when r falls below µ
1
d−2 .

On the inside of this event horizon, the flow of time in (18) is such that an object is

inexorably drawn toward the centre.

4. This implies that the mass generating the event horizon has been compressed to a

point. This, along with the fact that metrics for equal point masses should be indis-

tinguishable, tells us that (18) represents the most efficient packing of said mass into

a sphere of radius µ
1
d−2 .

5. The mass may be computed by taking the Newtonian limit. For those unfamiliar

with the ADM procedure [22], we will consider a test particle far away from the

origin, moving radially outward. If the motion is non-relativistic, the timelike geodesic

condition becomes gttṫ
2 ≈ −1 or ṫ2 ≈

(
1− µ

rd−2

)−1
. Substituting this into the geodesic

equation,

r̈ ≈ −Γrttṫ
2

≈ 1

2
∂rgtt

grr

1− µ
rd−2

= −∇
( µ

2rd−2

)
.

The function inside the gradient should be a solution to (17). Recalling the Green’s

function for the d-dimensional Laplacian, this is only true if µ = 16πGM
d(d−1)ωd

.

A further generalization of interest to us is the metric for a black hole that is asymptoti-

cally AdS. Anti-de Sitter space is the maximally symmetric solution to Einstein’s equations

when they have a negative cosmological constant. A cosmological constant defines a length

scale for the spacetime with

Λ ≡ −d(d− 1)

2L2
(19)
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by convention. Because of this, AdS posesses a conformal boundary. Its radial co-ordinate

is infinite but an observer is able to reach it in a finite amount of proper time. The solution

is

ds2 = −
(

1 +
r2

L2

)
dt2 +

(
1 +

r2

L2

)−1

dr2 + r2dΩ2
d−1 (20)

and a black hole metric asymptotic to this is

ds2 = −
(

1 +
r2

L2
− µ

rd−2

)
dt2 +

(
1 +

r2

L2
− µ

rd−2

)−1

dr2 + r2dΩ2
d−1 . (21)

Uniqueness of (21) in the same sense as (18) is suspected but not known. The horizon radius

is a solution to µ

rd−2
0

= 1 +
r20
L2 with the outermost one being the point of no return. The

mass is again given by µ = 16πGM
d(d−1)ωd

. To see this, a non-relativistic radial trajectory satisfies

r̈ ≈ −Γrttṫ
2

≈ 1

2
∂rgtt

= −∇
( µ

2rd−2

)
− r

L2
.

While this lacks the sophistocation of methods like [23], we obtain the right answer if we

simply subtract the acceleration that a particle would have in pure AdS.

It will be convenient to rewrite this metric in Eddington-Finkelstein co-ordinates. This

can be done using either the retarded time or advanced time, which take the form

u = t− r∗

v = t+ r∗

respectively. Differentiating these to arrive at

u̇ = ṫ− dr∗

dr
ṙ

v̇ = ṫ+
dr∗

dr
ṙ ,

we see that r∗ should be chosen so that its radial derivative is the factor relating ṫ and ṙ.

For a null geodesic,

ṫ = ±
(

1 +
r2

L2
− µ

rd−2

)−1

ṙ

where the positive sign corresponds to an outgoing particle and the negative sign corresponds

to an ingoing particle. We now have

dr∗

dr
=

(
1 +

r2

L2
− µ

rd−2

)−1

.
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In certain cases, this can be integrated to give r∗ explicitly. However, this is not needed for

replacing dt. Performing the change of variables,

ds2 = −
(

1 +
r2

L2
− µ

rd−2

)
du2 − 2dudr + r2dΩ2

d−1

ds2 = −
(

1 +
r2

L2
− µ

rd−2

)
dv2 + 2dvdr + r2dΩ2

d−1 (22)

are the desired metrics.

2. Hawking radiation

To derive the relation between entropy and the area of a black hole, we will follow

Hawking’s original paper [24] as well as the clarifications in [25, 26]. What we will see is

that two observers — one observing spacetime before a black hole has formed, the other

after — will have different definitions of the quantum vacuum. The Klein-Gordon equation

for a field in curved spacetime is

∇µ∇µφ−m2φ = 0

1√
−g

∂µ
(√
−ggµν∂νφ

)
−m2φ = 0 . (23)

For any two solutions φ1 and φ2, the Klein-Gordon inner product

〈φ1, φ2〉 =

∫
S

[φ∗1∇µφ2 − φ2∇µφ∗1] dΣµ (24)

will be conserved. The notation above suggests a scalar field, but this does not have to be

the case. Fields with multiple components like vectors and spinors satisfy the Klein-Gordon

equation componentwise. To indicate that Hawking radiation is a mixture of all types of

particles, we will write creation and anhilation operators as aI† and aI where I is an index

set. One simplification we will make, however, is that the fields are massless.

We may write a basis of solutions to (23) as fi and choose them to be orthonormal with

respect to (24). If we do this, the field operator takes the form

φI =
∑
i

fia
I
i + f ∗i a

I†
i .

In other words, positive frequency modes multiply anhilation operators while negative fre-

quency modes multiply creation operators. We will let these fi represent any particles that
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can be seen before a black hole forms. Since there are no such particles, the past observer

will see the vacuum state |0〉a defined as the state that is anhilated by all aIi . The future

observer sees a different metric and in particular a different time component of the metric.

This means he will have a different definition of positive and negative frequency. Writing

φI =
∑
i

gib
I
i + g∗i b

I†
i ,

each gi representing a particle in the black hole spacetime should be expressible as a linear

combination of the fi. A positive frequency gi may therefore include a contribution from a

negative frequency fi and vice versa. If so, the bIi will not anhilate the aIi vacuum and the

aIi will not anhilate the bIi vacuum. This discrepancy between |0〉a and |0〉b means that the

future observer will see radiation precisely because the past observer did not.

It is not correct to say that the only modes of φI are fi waves that the past observer can

see and gi waves that the future observer can see. There are also hi waves in the future that

cannot be seen because they are behind the event horizon of the black hole. We would have

to consider these if we wanted to write the past modes as linear combinations of the future

modes. As it happens, we will only need to write the future modes as linear combinations

of the past modes. Converting

gi =
∑
j

αijfj + βijf
∗
j

hi =
∑
j

σijfj + τijf
∗
j

into a set of relations between operators, we arrive at the so-called Bogoliubov transforma-

tion:

bIi =
∑
j

α∗ija
I
j − β∗ija

I†
j

cIi =
∑
j

σ∗ija
I
j − τ ∗ija

I†
j .

This tells us that the number of particles detected as belonging to gi in the future is given

by

ni = a 〈0| bI†i bIi |0〉a =
∑
j

|βij|2 . (25)

Assuming that we are dealing with bosons, we also have

1 = a 〈0|
[
bIi , b

I†
i

]
|0〉a =

∑
j

|αij|2 − |βij|2 . (26)
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We will now be more explicit about what the modes are so that we may plug them into the

inner product and find the αij and βij coefficients.

Spherical waves are convenient choices, but it is important not to use the expressions for

flat space spherical waves when we are really in a curved space. By construction, outgoing

null geodesics are lines of constant u while ingoing null geodesics are lines of constant v.

Therefore, the advanced and retarded times should be used in place of t± r giving us

fω,l1,...,ld−1
(v, θ1, . . . , θd−1) =

eiωv√
(ωr)d−1dωd

Yl1,...,ld−1
(θ1, . . . , θd−1)

gω,l1,...,ld−1
(u, θ1, . . . , θd−1) =

eiωu√
(ωr)d−1dωd

Yl1,...,ld−1
(θ1, . . . , θd−1) (27)

as approximate solutions for large r. We could similarly consider fω,l1,...,ld−1
(u, θ1, . . . , θd−1)

and gω,l1,...,ld−1
(v, θ1, . . . , θd−1) but these would affect the result very little. The interesting

effects come from waves that switch from ingoing to outgoing while the black hole is forming.

By this, we mean that waves of constant v travel toward the collapsing mass at r = 0. As

long as an event horizon has not formed yet, such waves may emerge from the other side and

start moving away with constant u. A natural question to ask is which constant u? That

is, what will u be in terms of the v that the wave used to have? This is the key question

that must be answered before we can take an inner product and derive Hawking’s result.

The difficulty in relating these is explained in Figure 2. A better way to compare objects A

and B is to imagine that A throws a ball C backwards until it is caught by B. The proper

time for C to travel should be equal along all stages of the journey. Instead of proper time,

we will use a difference of affine parameters which is appropriate for signals travelling at the

speed of light.

Waves hoping to escape the black hole must start off with a v smaller than the one

posessed by photon B in Figure 2. We will call this largest advanced time v0. If the spacetime

is Minkowski, long before the black hole has formed, v = t + r and affine parametrizations

are

t(λ) = t(0) +
λ

2

rA(λ) = rA(0)− λ

2

rB(λ) = rB(0)− λ

2

rC(λ) = rA(0) +
λ

2
.
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A

B

(a) Before

A

B

(b) After

FIG. 2: Photon A leaves a light source and starts heading toward r = 0. After a certain

time interval, photon B does the same. If the spacetime is Minkowski, the distance between

the two photons will not change. Conversely, if a black hole at r = 0 forms at just the right

time, photon A will escape but photon B will stay trapped at the event horizon forever.

By the time C makes it to B, it will have the same position and time co-ordinate as B so it

must have the same v as B. Therefore subtracting the advanced times corresponding to A

and C, we have

v − v0 = rA(λ)− rC(λ) = −λ .

We may therefore call v0 − v an affine parameter that vanishes for the wave that stays at

the event horizon. This means that after the horizon at r0 has formed, a wave’s radial

co-ordinate must look like r = r0 − λ. We will substitute this into the retarded time for C

noting that C is not a wave of constant u because it travels backwards from A back to B.

u̇ = ṫ− dr∗

dr
ṙ

= 2

(
1 +

r2

L2
− µ

rd−2

)−1

= 2

(
1 +

r2

L2
−
(r0

r

)d−2
(

1 +
r2

0

L2

))−1

= 2

(
1 +

(r0 − λ)2

L2
−
(

r0

r0 − λ

)d−2(
1 +

r2
0

L2

))−1

(28)

This does not have a closed form integral, but the interesting effects come from waves that
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are close to the horizon. Keeping only the lowest order in λ,

u̇ ≈ −2r0

λ

L2

(d− 2)L2 + dr2
0

u ≈ −2r0
L2

(d− 2)L2 + dr2
0

log

(
λ

C

)
= −2r0

L2

(d− 2)L2 + dr2
0

log

(
v0 − v
C

)
.

The equation relating u to v has now been found, so we may substitute (27) into (24) for

a surface whose normal derivative is ∂r. We will abbreviate the l1, . . . , ld−1 dependence as l

and the θ1, . . . , θd−1 dependence as θ.

αω
′,l′

ω,l = 〈gω,l, fω′,l′〉

= i

∫
Sd−1

∫ v0

−∞
f ∗ω′,l′(v, θ)∂

rgω,l(v, θ)− gω,l(v, θ)∂rf ∗ω′,l′(v, θ)dvdΩ

= i

∫
Sd−1

∫ v0

−∞
f ∗ω′,l′(v, θ)

[
∂v +

(
1 +

r2

L2
− µ

rd−2

)
∂r

]
gω,l(v, θ)

−gω,l(v, θ)
[
∂v +

(
1 +

r2

L2
− µ

rd−2

)
∂r

]
f ∗ω′,l′(v, θ)dvdΩ

=
i

dωd−1

√
ωω′

d−1

∫
Sd−1

Yl(θ)Y
∗
l′ (θ)dΩ

eiω
′v∂ve

2iωr0
L2

(d−2)L2+dr20
log( v0−vC ) − e

2iωr0
L2

(d−2)L2+dr20
log( v0−vC )

∂ve
iω′vdv

=
δ
l′1
l1
δ
l′2
l2
. . . δ

l′d−1

ld−1

dωd−1

√
ωω′

d−1

∫ v0

−∞

(
2ωr0

v0 − v
L2

(d− 2)L2 + dr2
0

+ ω′
)
e

2iωr0
L2

(d−2)L2+dr20
log( v0−vC )

eiω
′vdv

The other Bogoliubov coefficient is found similarly. The only difference is that when inte-

grating two spherical harmonics without a complex conjugate, we have to use the identity

Yl1,l2,...,ld−1
= (−1)l1Y ∗−l1,l2,...,ld−1

.

βω
′,l′

ω,l =
〈
gω,l, f

∗
ω′,l′

〉
=

(−1)l1δ
l′1
−l1δ

l′2
l2
. . . δ

l′d−1

ld−1

dωd−1

√
ωω′

d−1

∫ v0

−∞

(
2ωr0

v0 − v
L2

(d− 2)L2 + dr2
0

− ω′
)
e

2iωr0
L2

(d−2)L2+dr20
log( v0−vC )

e−iω
′vdv

The integrands above have a branch cut on the real axis because of the log
(
v0−v
C

)
. In order

to manipulate them with complex analysis, it is convenient to displace them with ±iε. The

α and β integrals become∫ v0

−∞

(
2ωr0

v0 − v
L2

(d− 2)L2 + dr2
0

+ ω′
)
e

2iωr0
L2

(d−2)L2+dr20
log( v0−vC

+iε)
eiω
′vdv (29)∫ v0

−∞

(
2ωr0

v0 − v
L2

(d− 2)L2 + dr2
0

− ω′
)
e

2iωr0
L2

(d−2)L2+dr20
log( v0−vC

−iε)
e−iω

′vdv (30)
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respectively. The signs for ±iε above are dictated by our requirement that e±iω
′v vanish at

infinity.

v0 ∞-∞

FIG. 3: For the function with +iε, it is not difficult to show that the semi-circular arc has

no contribution to the integral. Therefore the integral between −∞ and ∞ is zero.

The integral in (29) vanishes if the domain is the contour in Figure 3. We may therefore

split it up as follows.∫ v0

−∞

(
2ωr0

v0 − v
L2

(d− 2)L2 + dr2
0

+ ω′
)
e

2iωr0
L2

(d−2)L2+dr20
log( v0−vC

+iε)
eiω
′vdv

= −
∫ ∞
v0

(
2ωr0

v0 − v
L2

(d− 2)L2 + dr2
0

+ ω′
)
e

2iωr0
L2

(d−2)L2+dr20
log( v0−vC

+iε)
eiω
′vdv

= −eiω′v0
∫ 0

−∞

(
2ωr0

v′
L2

(d− 2)L2 + dr2
0

+ ω′
)
e

2iωr0
L2

(d−2)L2+dr20
log

(
−
(
−v′
C
−iε

))
eiω
′v′dv′

In the second step, we made the substitution v′ = v0 − v. This integral is written with the

understanding that it should be evaluated with a contour in the lower half plane. We must

therefore write log(−A) = log(A) − iπ instead of log(−A) = log(A) + iπ to avoid crossing

the branch cut. We will perform this step and then make another substitution v′ = v − v0.∫ v0

−∞

(
2ωr0

v0 − v
L2

(d− 2)L2 + dr2
0

+ ω′
)
e

2iωr0
L2

(d−2)L2+dr20
log( v0−vC

+iε)
eiω
′vdv

= −e
iω′v0+2πωr0

L2

(d−2)L2+dr20

∫ 0

−∞

(
2ωr0

v′
L2

(d− 2)L2 + dr2
0

+ ω′
)
e

2iωr0
L2

(d−2)L2+dr20
log

(
−v′
C
−iε

)
eiω
′v′dv′

= e
2iω′v0+2πωr0

L2

(d−2)L2+dr20

∫ v0

−∞

(
2ωr0

v0 − v
L2

(d− 2)L2 + dr2
0

− ω′
)
e

2iωr0
L2

(d−2)L2+dr20
log( v0−vC

−iε)
eiω
′vdv

By manipulating (29), we have turned it into a multiple of (30). This implies the relation:∣∣∣αω′,l′1,...,l′d−1

ω,l1...,ld−1

∣∣∣ = e
2πωr0

L2

(d−2)L2+dr20

∣∣∣βω′,l′1,...,l′d−1

ω,l1...,ld−1

∣∣∣ . (31)

Going back to (25) and (26), the integral
∑

l′1,...,l
′
d−1

∫∞
0

∣∣∣αω′,l′1,...,l′d−1

ω,l1...,ld−1

∣∣∣2 − ∣∣∣βω′,l′1,...,l′d−1

ω,l1...,ld−1

∣∣∣2 dω′

describes what the black hole will absorb. The integral
∑

l′1,...,l
′
d−1

∫∞
0

∣∣∣βω′,l′1,...,l′d−1

ω,l1...,ld−1

∣∣∣2 dω′ de-

scribes what the black hole will emit. Without worrying about normalization, (31) tells us
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that the ratio between a mode’s absorbtion and emission cross sections is

nω =

(
e

4πωr0
L2

(d−2)L2+dr20 − 1

)−1

. (32)

This is precisely the Bose-Einstein thermal factor for a blackbody at temperature

TBH =
1

4πr0

(
d− 2 + d

r2
0

L2

)
(33)

Had we used an anticommutator in (26), we would have seen the Fermi-Dirac factor for the

same temperature. The famous Bekenstein-Hawking entropy, S = A
4G

, clearly follows from

this if L is large. For a general L, we will use the fact that µ = rd−2
0 +

rd0
L2 to write

dM =
d(d− 1)ωd

16πG
dµ =

d(d− 1)ωd
16πG

[
(d− 2)rd−3

0 +
d

L2
rd−1

0

]
dr0 .

Then integrating,

SBH =

∫
dE

TBH

=

∫
dM

TBH

=
d(d− 1)ωd

4G

∫
rd−2

0 dr0

=
dωd
4G

rd−1
0

=
A

4G
(34)

and we see that the entropy formula is exactly the same in AdSd+1.

Hints that the area of a black hole somehow describes an entropy were already known in

1973 when Bekenstein proposed the proportionality with a coefficient “close to” log 2
8π

[27].

Apart from improving the coefficient to 1
4
, Hawking’s 1975 paper established that (34) is

the genuine entropy of a thermal spectrum [24]. Modern techniques can derive (34) much

more quickly but at the cost of once again obscuring the nature of this entropy [28, 29].

In 1981, Bekenstein noticed that (34) is more than just the entropy of a black hole. It

is an upper bound on the entropy that any system occupying the same volume can have

[30]. The argument, which was strong motivation for the AdS / CFT correspondence [8],

is remarkably simple. Suppose that a non-black hole system fills a ball of radius r0 and

has more entropy than A
4G

. Its mass must be less than that of a black hole with horizon

radius r0 and therefore, it can be turned into said black hole through the addition of mass.
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Such a procedure would give the system an entropy of A
4G

later on, violating the second

law of thermodynamics. Incidentally, two major open problems in physics are related to

the evaporation of black holes. A featureless object described uniquely by mass, charge and

angular momentum should not have entropy and yet we have seen that it contains more

entropy than anything else. While their exact nature remains unknown, some methods

for elucidating black hole microstates are provided by string theory [31]. A more serious

problem is the black hole information paradox. This is concerned with the fact that a bath of

radiation cannot contain information about the formation of a black hole. If a thermal state

is all that a black hole leaves behind after it evaporates, one effectively has a pure state

evolving into a mixed state which is a violation of unitarity. String theoretic resolutions

to this have been proposed as well but are, at the time of writing, much more speculative

[32, 33].

C. Strong coupling

The AdS / CFT correspondence delivers on a 1974 promise to make strongly coupled

U(N) and SU(N) gauge theories more tractable when N is large [34]. More precisely, the

quantum gravity theory in the bulk that is dual to a CFT becomes increasingly classical as

we take N →∞ with λ = g2
YMN fixed. This is known as the large N , planar or ‘tHooft limit.

The ‘tHooft coupling λ which only needs to be fixed, is the parameter that would have to

be small for the usual Feynman diagram expansion to be valid. When a series of Feynman

diagrams is written down using powers of 1
N

instead of gYM, the expansion looks very similar

to that of a closed string theory with coupling gs. For this reason, the identification

gs =
λ

4πN
(35)

appears in the duality [8]. This small string coupling allows a perturbative calculation to

be done in AdS when the field theory on the boundary is strongly coupled. Some of the

coupling strengths not covered by this limit (e.g. large gYM and N) can be explored with

the help of string dualities. For instance, a weak-strong symmetry known as S-duality is

often associated with Type IIB string theory [35]. If IIB in AdS is equivalent to SYM on the

boundary, this statement implies that (1) is invariant under gYM 7→ 1
gYM

. Although such a

result could have been discovered through holography, it was discovered earlier using some
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of the same evidence that led to the correspondence [36, 37]. In addition, we should note

that even if one believes AdS / CFT, the idea of S-duality holding for Type IIB string theory

is also a conjecture [35].

Using classical gravity to approximate field theories in the strong coupling regime has

become the most widely explored aspect of the AdS / CFT correspondence [38, 39]. For this

application, questions about whether string theory is realized in nature, are irrelevant. We

will go through an example of this duality, whereby the interacting spectrum of (1) can be

understood through our seemingly unrelated calculations regarding free field theories and

black holes.

1. Gauge theory phases

When compactified on a sphere, there are at least four interesting phases posessed by

Super Yang-Mills. The transitions in and out of these phases are gradual, as they must be

for a theory with finitely many fields. However, the transitions may become sharp in the

strict N →∞ limit. Following our pattern above, we will give an expression for the entropy

of each phase in order of increasing energy.

The first thing we need to know is that in the original version of the correspondence, the

bulk geometry is AdS5 × S5 where the length scale of AdS5 and the radius of S5 are equal

[1]. This radius, which we will call L is given by the duality prescription as

L4 = 4πgsα
′2N . (36)

There is also a radius for the S3 of the the field theory, which we will call R. It is natural

to compare the dimensionless energies of the string theory EL to “some multiple” of the

dimensionless energies of the field theory ER. By studying the Klein-Gordon equation (23)

for a graviton propagating in AdS5×S5, one may show that the second-lowest energy it can

have is

E1 =
1

L
. (37)

While this would not be the case for a general gauge theory, a highly supersymmetric theory

like SYM has some excited state energies that can be computed without the correspondence.

This is a harder calculation but an analysis of chiral primary operators [8, 40] tells us that
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E1 = 1
R

on the field theory side. The multiple in question is therefore 1 and we will be able

to replace EL with ER in what follows.

The low energy behaviour of the bulk is described by a free gas of strings in their world-

sheet ground states. Refering to (11), this is a gas of 128 bosons and 128 fermions —

essentially gravitons and their superpartners. The free field theory result (3) includes a

volume V , which is only well defined if there is a clear separation between space and time,

i.e.

ds2 = −dt2 + gijdx
idxj

where gij is a Riemanian metric. Since the line element

ds2 = −
(

1 +
r2

L2

)
dt2 +

(
1 +

r2

L2

)−1

dr2 + r2dΩ2
3 + L2dΩ2

5 (38)

is not in this form, the brute force calculation of the partition function would have to start

with the Klein-Gordon equation. Solving the relevant Klein-Gordon equation is certainly

a useful exercise. In addition to energy eigenvalues like (37), it would allow us to derive

a bound on the mass that any particle in AdS must satisfy [41, 42]. However, there is

another method that can tell us the appropriate V more quickly. Performing a conformal

transformation on (38), we may turn it into

ds2 = −dt2 +

(
1 +

r2

L2

)−2

dr2 +

(
1 +

r2

L2

)−1 (
r2dΩ2

3 + L2dΩ2
5

)
. (39)

The massless version of (23) (called the minimally coupled Klein-Gordon equation) is not

invariant under such a rescaling, but the conformally coupled Klein-Gordon equation is.

This equation is

∇µ∇µφ+
d− 1

4d
Rφ = 0 (40)

where R is the Ricci scalar. The volume associated with the (39) metric would therefore

appear in the partition function for this graviton gas in the conformally coupled case.

V =

∫ ∞
0

∫∫
S3×S5

(
1 +

r2

L2

)−5

L5r3dΩ3dΩ5dr

= 15ω3ω5L
5

∫ ∞
0

(
1 +

r2

L2

)−5

r3dr

=
15

24
ω3ω5L

9
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Because the difference between minimal and conformal coupling only appears beyond the

leading order thermodynamics [8, 17], it is sufficient to substitute d = 9, s = s∗ = 128 and

the V above. This yields

S1 =

(
1010

99

15

24

9!ω3ω5ω9

(2π)9
128 (ζ(10) + ζ∗(10))E9L9

) 1
10

= 10

(
9!ω3ω5ω9

15

24

1023

4
ζ(10)

) 1
10
(
EL

18π

) 9
10

= 10

(
2728

9355
π8

) 1
10
(
ER

9

) 9
10

(41)

as the entropy of the lowest energy phase.

As energy increases, the infinite tower of worldsheet vibrations becomes important and

the entropy enters the Hagedorn regime. Starting with (15), we just need to use the (35)

and (36) identifications to get the entropy for the second phase in terms of gauge theory

parameters:

S2 = 2π
√

2α′E

= 2π

(
L4

πgsN

) 1
4

E

= 2π

(
4

λ

) 1
4

ER . (42)

As with any proper string theory, the AdS5 × S5 background is not static. It receives a

backreaction from stringy states that becomes more significant as the energy increases. The

highest energy phases of Super-Yang Mills will therefore involve Newton’s constant G. The

formula

G5L
5 = 8π3g2

sα
′4 (43)

is the last piece of the correspondence that we need [43]. We mentioned previously that

Einstein’s equations (and Newton’s constant in particular) should be the same in all dimen-

sions. Thus, it may seem strange to refer to a five-dimensional gravitational constant G5.

The explanation is that G5 is not the gravitational constant at all, but rather an illusion

created by the presence of compact dimensions. The true G appears as a prefactor in the

Einstein-Hilbert action

S =
1

16πG

∫
AdS5×S5

(R− 2Λ)
√
−gdx .
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If the radius of the sphere is small enough, a macroscopic observer only sees AdS5. Inte-

grating out the S5 and looking at the prefactor once again will tell us the relation between

G5 and G. Using the fact that Ricci scalars add for direct product manifolds

S =
1

16πG

∫
AdS5×S5

(RAdS5 − 2Λ)
√
−gdx+

1

16πG

∫
AdS5×S5

RS5
√
−gdx

Seff =
1

16πG

∫
S5

√
gS5dx

∫
AdS5

(RAdS5 − 2Λ)
√
−gAdS5dx+ Sshift

=
6ω6L

5

16πG

∫
AdS5

(RAdS5 − 2Λ)
√
−gAdS5dx+ Sshift .

We have turned the action into an effective action by evaluating part of it. This makes it

clear that G5 = G
6ω6L5 . The fact that these dimensionally reduced Newton constants are

generally much smaller than G has led to the hypothesis that the apparent strength of

gravity increases when the distance is very small. Indeed, proponents of extra-dimension

phenomenology have discussed the possibility of forming black holes at the LHC [44–46].

With these constants in hand, we need to calculate the entropy associated with the

geometry that develops in the third phase. Since entropy increases with energy, it is only

logical that our spacetime should eventually achieve the geometry that has a monopoly on

entropy — that of a black hole. The mysterious microstates of this black hole can be put in

a one-to-one correspondence with the well defined microstates of the CFT. When the event

horizon r0 first forms, it is smaller than the radius L. It is therefore a good approximation

to describe it with the Schwarzschild solution (18) involving all ten spacetime dimensions.

Using the entropy formula (34),

S3 =
9ω9

4G
r8

0

=
9ω9

4G
µ

8
7

=
9

4

(
G

ω9

) 1
7
(

2πE

9

) 8
7

=
9

4

(
6L5G5

ω6

ω9

) 1
7
(

2πE

9

) 8
7

=
9

4

(
3πω6

N2ω9

) 1
7
(

2πEL

9

) 8
7

=
9

4

(
1890

N2

) 1
7
(
πER

9

) 8
7

. (44)

As the black hole grows to a radius r0 � L, the five small dimensions become negligible
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allowing us to use the asymptotically AdS black hole (21). This also makes it a good

approximation to say µ = r2
0

(
1 +

r20
L2

)
≈ r40

L2 . Inserting this into (34),

S4 =
ω4

G5

r3
0

=
ω4

G5

µ
3
4

=

(
ω4

G5

) 1
4
(

4πEL2

3

) 3
4

=

(
2N2ω4

πL3

) 1
4
(

4πEL2

3

) 3
4

= π
√
N

(
4

3
ER

) 3
4

. (45)

This matches the behaviour that a conformal theory must have at high energies (2).

We have yet to give estimates for the energy ranges where these phases are valid. Prefac-

tors for these energies would be suspicious due to the gradual nature of the phase transitions.

We will therefore only keep factors that may be comparable to N2. To determine when the

Hagedorn phase becomes important, we should set E to the mass of an excited string. From

(10), we see that this is of order 1√
α′
∝ λ

1
4

R
.

Strings have a characteristic length and a black hole with this length as its horizon radius

has a characteristic energy. When the energy of a string gas exceeds this, it is expected to

collapse to the small black hole that we discussed before. Of course there are some non-

black hole geometries having energies of this magnitude (e.g. a giant graviton [47]) but

these are “rare”. This is consistent with the “heat death” proposal in which a black hole is

the inevitable final state of a system that evolves via thermal fluctuations. An equivalent

statement on the CFT side is that as the dimensions of gauge invariant operators increase,

the fraction of them that describe black holes approaches unity [48]. The transition for

this black hole “probably forming” can be found by checking when the Hagedorn entropy

becomes comparable to the small black hole entropy. Setting (42) equal to (44), this energy

is of order N2

λ
7
4R

.

Finally, the midpoint between the small black hole and the large black hole occurs when

r0 = R. Expressing the event horizon radius in terms of the mass, E ∝ R7

G
∝ R2

G5
∝ N2

R
.
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Putting this together we see that the entropy for strongly coupled SYM is given by

S(E) =



10
(

2728
9355

π8
) 1

10
(
ER
9

) 9
10 ER� λ

1
4

2π
(

4
λ

) 1
4 ER λ

1
4 � ER� λ−

7
4N2

9
4

(
1890
N2

) 1
7
(
πER

9

) 8
7 λ−

7
4N2 � ER� N2

π
√
N
(

4
3
ER
) 3

4 N2 � ER

. (46)

Notice that if we were to find the entropy of free Super-Yang Mills by substituting d = 3

and s = s∗ = 8N2 in (3), the result would be 4
3
π
√
N (ER)

3
4 . The entropies differ by a factor

of
(

4
3

) 1
4 or equivalently, the free energies differ by a factor of 4

3
. Writing

F = −1

6
h(λ)π2N2V T 4 (47)

with h(0) = 1 and limλ→∞ h(λ) = 3
4
, various authors have studied how h interpolates between

these limits using curvature corrections on the string theory side [49] and loop diagrams on

the field theory side [50, 51]. It was later found that interpolating between weakly coupled

and strongly coupled free energy is not as simple as multiplying by h. Corrections to (47)

involving T 2 need to be multiplied by different functions of the ‘tHooft coupling [43].

2. Plasma balls

The microcanonical entropy of strongly coupled SYM on S3 (46) is a formula that we will

use repeatedly. Part of its derivation relied on the fact that the theory’s dual description

involved black holes radiating a thermal spectrum. The goal of this thesis is to argue for

the converse: an arbitrary field theory with an entropy sufficiently similar to (46) exhibits

dynamics that are indicative of black hole formation and evaporation. There is a large

class of field theory solutions, called plasma balls, that have been shown to be of this type

[7]. Most studies of them are numerical [7, 52, 53] but at least one has been constructed

analytically [54].

Consider the canonical phases of Super Yang-Mills found by fixing the temperature in-

stead of the energy. We may differentiate the entropy in (46) to plot β as a function of E.

At low temperatures, the system must be in the graviton gas phase. One could raise the

temperature (lower the dotted line) all the way to the Hagedorn temperature at which the
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Hagedorn
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FIG. 4: For an inverse temperature like the one shown, the gravity side must choose the

geometry that minimizes the free energy.

canonical ensemble ceases to exist but the most interesting situation occurs for an interme-

diate value where there is competition between three phases. From (46), a straightforward

calculation of the graviton gas free energy yields

F = −2728

9355
π8R9T 10 (48)

and we have already written the large black hole free energy (47). If we were to calculate the

small black hole free energy in the same way, we would find that it is positive, so (48) and

(47) are the only ones we need. Setting them equal, we find a first order phase transition at

TD =
1

R

(
9355N2

16368π5

) 1
6

. (49)

Were it not for the complication of the internal manifold S5, this would be the Hawking-Page

transition [28] showing that a sufficiently large black hole in AdS can come to equilibrium

with the radiation it emits. Since the energy, entropy and temperature of a black hole are

all known in terms of its event horizon radius r0,

F = E − TS

=
dωd

16πG
rd−2

0

(
1− r2

0

L2

)
.

When r0 < L, this is minimized for an r0 that rolls to zero. When r0 > L, this is minimized
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for as large an r0 as possible. Substituting r0 = L into (33), we find

THP =
d− 1

2πL
. (50)

This phenomenon on the field theory side has the interpretation of a deconfinement phase

transition related to the scale R. As R → ∞, the temperature (49) vanishes and there is

no confinement as expected for a CFT in Minkowski space. Since the confining theory of

greatest physical interest (quantum chromodynamics) lives in infinite volume, it has little

in common with Super Yang-Mills on S3. A holographic study of QCD requires one to

introduce a scale to SYM in a more drastic way.

This can be done by compactifying some but not all of the directions in a Minkowski

CFT. Witten’s model [29] e.g. compactifies SYM on a Scherk-Schwarz circle — S1 with

antiperiodic fermions. Since the other directions are extended, it is helpful to rewrite (20)

so that they manifestly appear as Minkowski space. Global AdS is large enough for this

to be done several times yielding disjoint patches separated by co-ordinate singularities. A

given patch has the following metric known as Poincaré AdS

ds2 =
L2

z2

[
−dτ 2 + dz2 + dxidx

i
]

(51)

where the boundary is located at z = 0. The transformation

t = arctan

(
2Lτ

L2 + z2 + x2 − τ 2

)
r =

L

z

√
z2 + τ 2 +

1

4L2
(L2 + z2 + x2 − τ 2)2 (52)

sin θi . . . sin θi−1 cos θi =
xi√

z2 + τ 2 + 1
4L2 (L2 + z2 + x2 − τ 2)2

(53)

converts between the global and Poincaré metrics [8]. Some sources assume r � L before

deriving (51) in order to write the simpler transformation z = L2

r
[55]. This gives the false

impression that (51) is only approximately equal to a patch of AdS. Applying (52) to (21)

gives another form of the AdS black hole:

ds2 =
L2

z2

[
−
(

1− zd

zd0

)
dτ 2 +

(
1− zd

zd0

)−1

dz2 + dxidx
i

]
. (54)
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If we compactify a spatial direction and let j take on fewer values than i, the resulting metric

is:

ds2 =
L2

z2

[
−
(

1− zd

zd0

)
dτ 2 +

(
1− zd

zd0

)−1

dz2 + dxjdx
j + dθ2

]
. (55)

An interesting procedure, that would not have worked for any of the previous metrics, is

available to be used on (55). We may Euclideanize, exchange the θ circle with the τ circle

and switch back to a Minkowskian signature. This yields a spacetime known as the AdS

soliton without us having to solve Einstein’s equations again.

ds2 =
L2

z2

[
−dτ 2 +

(
1− zd

zd0

)−1

dz2 + dxjdx
j +

(
1− zd

zd0

)
dθ2

]
(56)

The deconfinement we saw earlier was a transition between two spacetimes that shared the

same boundary: empty AdS and the AdS black hole. We now have (55) and (56) competing

for the same boundary. However, the horizon position z0 has a very different interpretation

in (56) because it causes the θ circle to shrink to zero size. A horizon that observers can safely

cross changes the signature according to (−,+,+, . . . ,+,+) 7→ (+,−,+, . . . ,+,+). On the

other hand, if we allowed z > z0, we would see (−,+,+, . . . ,+,+) 7→ (−,−,+, . . . ,+,−).

Because this is a Lorentzian theory, z0 is simply a point where the spacetime ends. This

enduring scale, called the infrared wall, is what leads to a mass gap [56].

The Witten model with these two backgrounds is the typical arena for seeing plasma

balls. These were conjectured [7] based on the observation that stable domain walls should

exist between solutions like (55) and (56). Roughly, such a domain wall is constructed

by choosing a special direction y and making z0 a function of y. Choosing this function

appropriately, the bulk metric can be made to look like the black hole at y = ∞ and the

soliton at y = −∞. This solution, which cannot be found analytically, may look like the

one in Figure 5. In order for it to be stable, the pressure of the deconfined phase must be

small enough to balance the domain wall tension at some temperature. Intuitive arguments

for this are given in [7] with the final confirmation being numerical. This process can be

repeated to further localize the domain wall. Instead of going from the confining vacuum at

y = −∞ to the deconfined plasma at y = ∞, one may change the solution so that it goes

from confined to deconfined and back [56]. This can also be done using directions other than

y to make the area of the black hole horizon finite. The black hole made in this way decays

in a process that looks like some combination of shrinking in y and hitting the infrared wall
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FIG. 5: The green sheet is the boundary at z = 0. While Poincaré AdS looks like empty

space ending on this boundary, the black hole and soliton solutions are more interesting.

Instead of enclosing a region of finite volume, the horizon is a sheet at z = z0 like that of a

black brane. To remind us that there is a Scherk-Schwarz circle at each point, we have

drawn the horizon as a set of black circles inside cylinders that extend infinitely far to the

left. These cylinders become cigar shaped regions in the soliton solution that has the

infrared wall. On the right, we show an interpolation between these behaviours. For

y =∞, the IR wall does not exist. For finite positive y it is behind the horizon and for

negative y it is in front.

in z. The field theory state dual to this black hole near the IR is called a plasma ball. The

dual decay process consists of hadrons leaving the ball and travelling outwards. Because

they are travelling into a confining vacuum, they must be color singlets, leading to a lifetime

proportional to N2 [7].

When deriving (46), the black holes we discussed were dual to energy eigenstates of SYM

on S3. In analogy with free theories (whose momentum eigenstates are completely delo-

calized), these states have uniform energy density of order N2

R4 on the whole sphere. The

situation is very different for plasma balls. They have non-uniform energy densities like

those in Figure 6 because their dual black holes come from an interpolation of gravity sad-

dle points. When we construct plasma balls (in a completely different manner), we should

keep in mind that small compact directions and infrared walls are likely to appear in the

corresponding geometries. As a check, it is interesting to see what goes wrong when trying

to construct a plasma ball for Super-Yang Mills on S3. In principle, one could prepare a

state in the CFT that has Figure 6’s energy density at t = 0. Rather than a thermaliza-

tion process dual to Hawking radiation, this state’s future is governed by the phenomenon
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FIG. 6: On the field theory side, the domain wall shows up as a sudden jump in the energy

density. The minimum is close to zero while the maximum is the expected energy at the

deconfinement temperature. The existence of a plasma ball is the additional assumption

that we can make this domain wall “wrap around”. The decay of the resulting object

might look like diffusion governed by the heat equation.

of collective oscillations [57]. When quantized on a sphere, the generators of conformal

transformations obey the same commutation relations as traditional raising and lowering

operators. Rewriting them as Li+ and Li−, [57] constructed undamped oscillating states by

applying a function of them to a density matrix: ρ 7→ N g
(
L1
±, . . . , L

d
±
)
ρg†
(
L1
±, . . . , L

d
±
)
. In

analogy with coherent states of the harmonic oscillator, explicit functions were given such

as the simplest one:

g
(
Li+, L

i
−
)

= eαL
i
++βLi− . (57)

When α = −β∗, (57) is unitary and N = 1, but [57] gave normalization constants for other

α and β as well. Crucially, the AdS isometry dual to (57) is no more complicated than a

boost. This allows its effect on strongly coupled states to be found with the AdS / CFT

correspondence. The example considered in [57] starts with a three-dimensional spacetime

known as the BTZ black hole [58]:

ds2 = −
(
r2

R2
− r2

0

R2

)
dt2 +

(
r2

R2
− r2

0

R2

)−1

dr2 +
r2

R2
dx2 . (58)

As before, the boundary theory dual to this has a uniform stress-energy tensor when com-
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pactified on the x
R
∼ x

R
+ 2π sphere:

Ttt = Txx =
r2

0

16πGR3

Ttx = Txt = 0 . (59)

We could use AdS3 / CFT2 analogues of (36) and (43) to replace r0 and G with gauge

x

E

FIG. 7: This localized lump of energy is certainly something like the t = 0 slice of a plasma

ball. We are claiming that if it forms on a sphere, its evolution is too dynamic to be

considered that of a plasma ball. Its motion cannot be undone by a boost because this

turns it back into the uniform profile of (59).

theory expressions above. Because AdS has a boundary, boosting (58) to a velocity of v

yields a black hole that oscillates about the origin indefinitely. The CFT state dual to this

bouncing black hole has the stress-energy tensor:

Ttt = Txx =
1

32πGR3

[
(1− v2)(R2 + r2

0)(
v cos

(
t−x
R

)
− 1
)2 +

(1− v2)(R2 + r2
0)(

v cos
(
t+x
R

)
− 1
)2 − 2R2

]

Ttx = Txt =
v(1− v2)(R2 + r2

0)

8πGR3

[
sin
(
t
R

)
sin
(
x
R

) (
v cos

(
t
R

)
cos
(
x
R

)
− 1
)(

v cos
(
t−x
R

)
− 1
)2 (

v cos
(
t+x
R

)
− 1
)2

]
. (60)

Thus we see that a valid CFT solution having Figure 7 as its t = 0 energy density is not a

meta-stable ball at a fixed position, but a stable flow with an oscillating position [57].
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III. TREATING ENERGY STOCHASTICALLY

Our goal is to model certain features of an interacting field theory, without recourse to

what the specific interaction is. One way to accomplish this is to construct a model that

is based on the system’s density of states. A thermodynamic quantity like this is easier

to understand than the Hamiltonian because it is only an indication of the spectrum of

the Hamiltonian. The result of our derivation will be an evolution equation for the energy

density at each point in space.

A. Main equations

To begin our analysis, we consider a cubic lattice of identical sites in d dimensions and

keep track of the number of units of energy that can be found on each site. Following

[2], we will write {nr} to mean n1 units on site 1, n2 units on site 2, n3 units on site

3, etc. Each configuration has a certain probability of being realized. This probability

is P ({Nr}(t) = {nr}). Uppercase letters have been used for random variables with the

lowercase versions denoting specific values. However, we will often shorten this to P ({nr}).

In a stochastic process with continuous time, the probabilities as a function of time obey

the master equation [59]:

∂P ({nr})
∂t

=
∑
{n′r}

[
P ({n′r})W{n′r}→{nr} − P ({nr})W{nr}→{n′r}

]
. (61)

The W quantities which determine the process are called the transition rates and are defined

by:

W{nr}→{n′r} = lim
τ→0

P ({Nr}(t+ τ) = {n′r}|{Nr}(t) = {nr})
τ

.

To convert (61) into something more concrete, we will make three physical assumptions:

local energy conservation, detailed balance and entropic dominance.

1. Physical assumptions

Inline with our first assumption, we declare that any transition which is nonlocal or does

not conserve energy has a W value of zero. In the transition rates that are left, energy is

transferred between two sites and those sites must be nearest neighbours. Instead of listing
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all {n′r} configurations that can be reached from {nr}, we may simply choose a pair of sites

〈a, b〉 and a number k to transfer between them. The master equation therefore becomes

∂P ({nr})
∂t

=
∑
〈a,b〉

∑
k 6=0

[
P (. . . , na + k, nb − k, . . . )W(na+k,nb−k)→(na,nb)

−P (. . . , na, nb, . . . )W(na,nb)→(na+k,nb−k)

]
. (62)

We will not work directly with probabilities, but rather the expectation of a particular site’s

energy:

n̄c ≡ 〈Nc〉 =
∑
{nr}

P ({nr})nc . (63)

The next step is to differentiate (63) and substitute (62):

∂n̄c
∂t

=
∑
{nr}

nc
∂P ({nr})

∂t

=
∑
{nr}

nc
∑
〈a,b〉

∑
k 6=0

[
P (. . . , na + k, nb − k, . . . )W(na+k,nb−k)→(na,nb)

−P (. . . , na, nb, . . . )W(na,nb)→(na+k,nb−k)

]
.

Every P (. . . , na + k, nb − k, . . . )W(na+k,nb−k)→(na,nb) in the sum is a

P (. . . , na, nb, . . . )W(na,nb)→(na+k,nb−k) for some other {nr} and the negative k value.

As long as nc does not appear, these cancel with the same coefficient. We may therefore let

a = c and reindex.

∂n̄c
∂t

=
∑
〈b,c〉

∑
k 6=0

∑
{nr}

[
ncP (. . . , nb + k, nc − k, . . . )W(nb+k,nc−k)→(nb,nc)

−ncP (. . . , nb, nc, . . . )W(nb,nc)→(nb−k,nc+k)

]
=
∑
〈b,c〉

∑
k 6=0

∑
{nr}

[
(nc + k)P (. . . , nb, nc, . . . )W(nb,nc)→(nb−k,nc+k)

−ncP (. . . , nb, nc, . . . )W(nb,nc)→(nb−k,nc+k)

]
=
∑
〈b,c〉

∑
k 6=0

∑
{nr}

kP (. . . , nb, nc, . . . )W(nb,nc)→(nb−k,nc+k)

=

〈∑
〈b,c〉

∑
k 6=0

kW(nb,nc)→(nb−k,nc+k)

〉
≈
∑
〈b,c〉

∑
k 6=0

kW(n̄b,n̄c)→(n̄b−k,n̄c+k) (64)

We have yet to show that it is safe to replace random variables by their expectations in

the last step. Since (64) is still quite general, further work is required to narrow down our

choices for W .
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The configurations {nr} represent collections of several microstates. Introducing the

function ρ(nr) giving the number of ways for site r to have energy nr, it is easy to count the

number of ways in which our configurations can be realized. There are
∏

r ρ(nr) microstates

with the distribution {nr}. The most familiar situation in statistical mechanics is that of

thermal equilibrium. State µ in equilibrium is achieved with probability P (µ) = 1
Z
e−βE.

Since this is just one microstate, we should add up a sufficient number of them to get

P ({nr}) =
1

Z
e−βE

∏
r

ρ(nr) . (65)

These are equilibrium probabilities so the master equation should vanish when they are

inserted. This condition provides a constraint on the possible transition rates but we will

make use of a stronger condition; the principle of detailed balance. Detailed balance, which

holds for reversible Markov chains, states that all terms in (62) should separately vanish in

equilibrium instead of just the entire sum:

P (. . . , na + k, nb− k, . . . )W(na+k,nb−k)→(na,nb) = P (. . . , na, nb, . . . )W(na,nb)→(na+k,nb−k) . (66)

This principle was famously used by Einstein to predict spontaneous emission rates before

quantum field theory had been developed [60]. Substituting (65) into (66), our condition

becomes

ρ(na + k)ρ(nb − k)W(na+k,nb−k)→(na,nb) = ρ(na)ρ(nb)W(na,nb)→(na+k,nb−k) . (67)

There are many solutions to this system of equations but some make more sense than others.

One solution to (67) has W(na+k,nb−k)→(na,nb) proportional to the number of final states

ρ(na)ρ(nb). This type of transition rate is the one most compatible with the ergodic principle.

When fluctuations are completely thermal, a higher number of final states should be the only

thing favouring one transition over another. We write

W(na,nb)→(na+k,nb−k) ∝ C(na, nb)ρ(na + k)ρ(nb − k)

where there can be some additional dependence on k. Substituting this into (67), we find

C(na, nb) = C(na + k, nb − k) .

Using this relation repeatedly, we may set k equal to na or nb, telling us that C is only a

function of the total energy. For this to be valid, any configuration must be reachable from
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the configuration obtained by having one site shift all of its energy to a neighbour. This is

the same as saying that there are no superselection sectors. We now have

W(na,nb)→(na+k,nb−k) ∝ C

(
na + nb

2

)
ρ(na + k)ρ(nb − k) (68)

where we have included the factor of 1
2

for later convenience. We should note that

W(na+k,nb−k)→(na,nb) is not proportional to the number of configurations that have na on

site a and nb on site b. This would be ρ(na)ρ(nb)
∏

r/∈{a,b} ρ(nr). A transition rate involving

all of these factors would be inconsistent with the nearest neighbour logic we have been

using. The only transition we have allowed is one in which site b sends k units of energy

to site a. If a transition rate compatible with the ergodic principle also depends linearly

on ρ(nc) for some other site c, this is not a transition rate for (na, nb) → (na + k, nb − k)

but rather (na, nb, nc) → (na + k, nb − k, nc). In other words, site c has itself undergone a

transition to some other internal state that keeps the same energy nc. This amounts to two

transition happening in the same timestep. Moreover, there is no way to tell that this is

indeed a nearest neighbour transition paired with a transition between internal states far

away. It could have been site b sending k units of energy to site c followed immediately by

c sending k units of energy to site a, thus violating locality.

2. The continuum limit

The equation we wish to build on is

∂nc
∂t

=
∑
〈b,c〉

∑
k 6=0

kW(nc,nb)→(nc+k,nb−k) (69)

where the transition rates are given by (68). So far, we have been assuming that the energy

and the spatial co-ordinate both vary by discrete amounts. One way to write this is to have

site c labelled by x which means that site b is x± ae for some unit vector e. To consider a

continuous version of (69), the lattice constant a must approach zero. Additionally, the sum

over k 6= 0 must become a sum over ±ε with ε also going to zero. Our formula (68) becomes

W(E(x),E(x+ae))→(E(x)+ε,E(x+ae)−ε) = C

(
E(x) + E(x + ae)

2

)
ρ(E(x) + ε)ρ(E(x + ae)− ε)

(70)

where we use E instead of n to make it clear that we are talking about energy densities that

are being incremented continuously. One should keep in mind that C has units of inverse
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time in order for W to be a rate. Since our differential equation for the energy density is

now a function of the small parameters ε and a, a useful approximation to it can be derived

with a Taylor expansion.

Using (70) in the continuous version of (69), we have

∂E(x)

∂t
= ε

∑
e∈{±e1,...,±ed}

[
W(E(x),E(x+ae))→(E(x)+ε,E(x+ae)−ε) −W(E(x),E(x+ae))→(E(x)−ε,E(x+ae)+ε)

]
= ε

∑
e∈{±e1,...,±ed}

C

(
E(x) + E(x + ae)

2

)
[ρ(E(x) + ε)ρ(E(x + ae)− ε)

−ρ(E(x)− ε)ρ(E(x + ae) + ε)] . (71)

We will define
∂E

∂t
= X(ε, a) = εX̃(ε, a)

in which case the relevant Taylor series becomes

∂E

∂t
=

∞∑
m=0

∞∑
n=0

εman

m!n!

∂m+nX

∂εm∂an

∣∣∣∣
a=0
ε=0

. (72)

We can see from (71) that X̃(0, a) = 0 = X̃(ε, 0), so any term in (72) that survives, must

involve at least three derivatives of X: two with respect to ε and one with respect to a. In

fact, the number of derivatives we need to take is even higher. Differentiating something

like ρ(E(x + ae)) with respect to a would contribute a ∂ρ
∂E
∂iEei term inside the sum. If we

add up the ith components of e where e runs over all positive and negative standard basis

vectors, the result is zero. This means we need at least one more derivative with respect to

a and the approximation we seek is:

∂E

∂t
=

1

4
ε2a2 ∂4X

∂ε2∂a2

∣∣∣∣
a=0
ε=0

. (73)

We will use the abbreviated notation ρ+ = ρ(E(x + ae)) and C+ = C
(
E(x)+E(x+ae)

2

)
which

satisfy

∂ρ+

∂a
= ej∂jρ+

∂C+

∂a
=

1

2
ej∂jC+ . (74)

Also, the derivatives with respect to ε are not calculated here but in the appendix. Picking
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up from where the appendix leaves off,

∂4X

∂ε2∂a2

∣∣∣∣
a=0
ε=0

= 2
∂3X̃

∂ε∂a2

∣∣∣∣∣
a=0
ε=0

= 4
∑

e∈{±e1,...,±ed}

∂2

∂a2

[
C+

(
ρ+

dρ

dE
− ρdρ+

dE

)]∣∣∣∣
a=0

= 4
∑

e∈{±e1,...,±ed}

ei
∂

∂a

[
1

2
∂iC+

(
ρ+

dρ

dE
− ρdρ+

dE

)
+ C+

(
∂iρ+

dρ

dE
− ρ∂i

dρ+

dE

)]∣∣∣∣
a=0

= 4

[
C

(
∂i∂jρ

dρ

dE
− ρ∂i∂j

dρ

dE

)
− ∂iC

(
ρ∂j

dρ

dE
− ∂jρ

dρ

dE

)] ∑
e∈{±e1,...,±ed}

eiej

= 8

[
C

(
∂i∂iρ

dρ

dE
− ρ∂i∂i

dρ

dE

)
− ∂iC

(
ρ∂i

dρ

dE
− ∂iρ

dρ

dE

)]
. (75)

It is not immediately obvious but (75) simplifies to a more compact expression involing a

logarithm. If we expand

−Cρ2∂i
d log ρ

dE
= −Cρ2∂i

dρ
dE

ρ

= Cρ2∂iρ
dρ
dE
− ρ∂i dρ

dE

ρ2

= C

(
∂iρ

dρ

dE
− ρ∂i

dρ

dE

)
,

we get something whose ∂i derivative is (75). This shows that

∂E

∂t
= −2ε2a2∂i

(
C(E)ρ2(E)∂i

d log ρ(E)

dE

)
. (76)

Checking the dimensions of (76), the left hand side is an energy density over a time. On the

right hand side, we have an energy density in the form of ε because the other ε cancels with

the dE. We also have an inverse time because the function C had inverse time units. The a2

cancels with the two spatial derivatives. From now on, we will drop unknown dimensionful

parameters by absorbing them into the time. The main differential equation of our model is

∂E

∂t
= −∂i

(
Cρ2∂i

d log ρ

dE

)
(77)

in which C is assumed to be a dimensionless function. Common choices for it will be 1 and

ρ−2.
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B. Interesting features

Our continuum limit equation has particularly nice things to say about a system with

microcanonical phases like (46). At least two of these phases only appear at energies that

are large compared to the spatial volume. After considering some insights in [2] concerned

with the case ∂E
∂t

= 0, we will see that large energies are required to even trust the model at

a basic level.

1. Static situations

A special role is played by the density of states whose logarithm is linear in E. This is the

Hagedorn density of states that we saw appearing in string theory and Super Yang-Mills:

ρ(E) ∝ eβHE. In this case d log ρ(E)
dE

= βH, a constant. The ∂i acting on this constant will

set the left hand side of (77) to zero. Under Hagedorn behaviour, the energy distribution

E(x, t) does not change with time.

The gauge theories with holographic duals have a Hagedorn regime as well as other

phases. As stated before, we expect log ρ(E) ∝ Eα where we could have α < 1, α > 1

or α = 1 depending on the energy. Since the dynamics are frozen with a purely Hagedorn

density of states, we expect changes in the energy to take place very slowly if α = 1 is the

widest phase. The α = 1 phase can equivalently be described as the energy range for which

the inverse temperature β(E) is flat.

Using the fact that log ρ(E) is the microcanonical entropy, we can rewrite our main

equation in terms of β(E) as well:

d log ρ(E)

dE
=

dS(E)

dE
= β(E)

and our equation becomes
∂E

∂t
= −∂i

(
Cρ2∂iβ

)
. (78)

The phases can be characterized by whether β is decreasing (α < 1), increasing (α > 1) or

neither (α = 1).

With a Hagedorn density of states, ∂E
∂t

vanishes for any energy distribution. Conversely

with a uniform energy distribution, ∂E
∂t

vanishes for any density of states. This equilibrium

distribution may be stable or unstable depending on the phase we are in. We will decompose
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the energy as

E(x, t) = E0 + Ẽ(x, t)

where Ẽ is small, allowing us to keep only one power of it in the PDE (78). First,

∂iβ(E) ≈ ∂i

(
β(E0) + Ẽ

dβ(E0)

dE

)
=

dβ(E0)

dE
∂iẼ .

This expression with one power of Ẽ is multiplied by C(E)ρ2(E). A first order expansion

of C(E)ρ2(E) would give an overall result that is second order in Ẽ so we only expand it to

zeroth order:
∂Ẽ

∂t
≈ −C(E0)ρ2(E0)

dβ(E0)

dE
∂i∂iẼ . (79)

This is either the heat equation or the reverse heat equation depending on whether the

overall coefficient is negative or positive. The sign of dβ0
dE

is what matters because C and ρ

are positive functions. Agreeing with our earlier intuition about the entropic dynamics of

energy, we have the following three cases:

• dβ
dE

< 0 is a decreasing inverse temperature, a concave entropy and a log-concave

density of states. It leads to diffusion or inhomogeneities that decrease with time due

to the heat equation.

• dβ
dE

> 0 is an increasing inverse temperature, a convex entropy and a log-convex density

of states. It leads to clustering or inhomogeneities that increase with time due to the

reverse heat equation.

• dβ
dE

= 0 is a constant inverse temperature, a linear entropy and a Hagedorn density of

states. It leads to static behaviour.

Understanding the detailed properties of the diffusion and to a lesser extent the clustering

caused by this PDE will be the focus of the next chapter.

2. Mean-field variances

A loose end in this chapter has been the assumption that we may work only with expected

values in (64). In general, mean-field approximations may be used on quantities that have

47



a small variance. An energy with a small variance is also one of the desired features of

our model. After all, the model is an attempt at connecting the excitations of field theory

degrees of freedom to Einstein gravity, something that is completely deterministic.

If variances are initially small, we want to make sure that they grow slowly so that our

model stays valid for a long time. Just as we derived an expression for ∂n̄c
∂t

from the master

equation, we can repeat the calculation for ∂n̄2
c

∂t
.

∂n̄2
c

∂t
=
∑
{nr}

n2
c

∂P ({nr})
∂t

=
∑
〈b,c〉

∑
k 6=0

∑
{nr}

[
n2
cP (. . . , nb + k, nc − k, . . . )W(nb+k,nc−k)→(nb,nc)

−n2
cP (. . . , nb, nc, . . . )W(nb,nc)→(nb−k,nc+k)

]
=
∑
〈b,c〉

∑
k 6=0

∑
{nr}

[
((nc + k)2 − n2

c)P (. . . , nb, nc, . . . )W(nb,nc)→(nb−k,nc+k)

]
=
∑
〈b,c〉

∑
k 6=0

∑
{nr}

(2knc + k2)P (. . . , nb, nc, . . . )W(nb,nc)→(nb−k,nc+k)

≈
∑
〈b,c〉

∑
k 6=0

(2knc + k2)W(n̄b,n̄c)→(n̄b−k,n̄c+k) (80)

If we combine (80) with (64),

σ2
c = n̄2

c − n̄2
c

∂σ2
c

∂t
=

∂n̄2
c

∂t
− 2n̄c

∂n̄c
∂t

=
∑
〈b,c〉

∑
k 6=0

k2W(n̄b,n̄c)→(n̄b−k,n̄c+k)

=
∑
〈b,c〉

∑
k 6=0

k2C

(
n̄b + n̄c

2

)
ρ(n̄b − k)ρ(n̄c + k)

where we have substituted the W solution (68). This equation for the variance can be

examined in the continuum limit and the key is that we do not need as many orders as ε2a2

in the subsequent Taylor expansion. The continuum limit is

∂σ2(x)

∂t
= ε2

∑
e∈{±e1,...,±ed}

[
W(E(x),E(x+ae))→(E(x)+ε,E(x+ae)−ε) +W(E(x),E(x+ae))→(E(x)−ε,E(x+ae)+ε)

]
= ε2

∑
e∈{±e1,...,±ed}

C

(
E(x) + E(x + ae)

2

)
[ρ(E(x) + ε)ρ(E(x + ae)− ε)

+ρ(E(x)− ε)ρ(E(x + ae) + ε)] (81)
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where the positive sign is due to the fact that we have k2 instead of k. Again, define

∂σ2

∂t
= X(ε, a) = ε2X̃(ε, a) .

When Taylor expanding X, we need at least two derivatives with respect to ε because of the

ε2 prefactor. This is all we need because X̃(0, 0) is nonzero.

∂σ2

∂t
=

1

2
ε2
∂2X

∂ε2

∣∣∣∣
a=0
ε=0

= ε2X̃(0, 0)

= 2ε2
∑

e∈{±e1,...,±ed}

Cρ2

= 4dε2Cρ2 (82)

Unlike (76), it is not the same unknown function that appears on the left and right hand

sides of (82). One must first solve for E(x, t) in order to solve for σ(x, t).

Since the expression for ∂E
∂t

has a small prefactor of a2 while that for ∂σ2

∂t
does not, it

would seem that the rate of change of the variance is parametrically larger, something we

wished to avoid. However, it does not make sense to compare these quantities directly. The

energy has the same units as its standard deviation so we should compare ∂σ
∂t

to ∂E
∂t

or more

conveniently, ∂σ2

∂t
to ∂E2

∂t
.

∂σ2

∂t
∂E2

∂t

=
∂σ2

∂t

2E ∂E
∂t

(83)

Factors of ε2 in the numerator and denominator cancel leaving Ea2 in the denominator. This

tells us that such a ratio of derivatives can indeed be small if the energy is large enough. In

other words, a PDE like (77) can be trusted to model high energy phenomena. Thinking

about gravity, this includes the extreme environments of black holes but not the everyday

motion of test particles around them. On a more practical level, it would be difficult to even

write down the equation (77) if we were concerned with it holding for low energies. For the

field theories we are interested in, only asymptotic expressions are known for the density of

states. Even for situations in which the exact number of states is known for all energies,

this ρ(E) is not continuous.
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IV. NONLINEAR DIFFUSION

We now cover some of the properties of equations like (77) that are known analytically.

The main assumption we will use throughout this chapter is that β is weakly decreasing, i.e.

dβ
dE
≤ 0. This is a slight departure from the strongly coupled gauge theory result as shown

in Figure 8. If C(E) = ρ−2(E),

E

β

(a) Sharp phases

E

β

(b) Smooth phases

E

β

(c) Purely diffusive

FIG. 8: To emphasize the four phases expected in holographic gauge theories, we have

drawn a piecewise β(E) function. It is more realistic to expect an approximation to this

function that is differentiable whenever E > 0. The function plotted in the middle figure is

still difficult to work with because there is a small range of energies for which it is

increasing. Assuming that this phase is negligible is the best way to predict the behaviour

of our nonlinear PDE.

∂E

∂t
= −∂i

(
C(E)ρ2(E)∂iβ(E)

)
(84)

becomes
∂E

∂t
= −∂i∂iβ̃(E) (85)

where β̃(E) = β(E). We will in fact consider (85) regardless of C. This is because (84)

is always (85) for some other β̃. Simply define β̃′ = Cρ2β′. Because C and ρ are positive

functions, β̃ is decreasing if and only if β is. Therefore we will drop the tilde and write

∂E

∂t
= −∆β(E) (86)

from now on. Of course the β(E) in (86) no longer has to be of the form plotted in Figure

8 but this will be unimportant for most of the results that follow.
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A. Basic properties on a bounded domain

We will start by assuming that x ∈ Ω where Ω is an open, bounded domain in Rd. This

allows the initial energy density E(x, 0) to be integrable without decaying to zero. As shown

in Figure 9, a potential problem with (86) is thus avoided because the low energies for which

β diverges are not realized. The initial condition will be denoted E0(x) reflecting the fact

x

E

Emax

Emin

(a) Energy distribution

E

β

Emin Emax

(b) Realized range of energies

FIG. 9: Resricting the size of the domain allows us to avoid the vanishingly small energies

for which our PDE no longer applies.

that we choose an energy distribution to evolve forward in time, i.e. E0 is an input to the

Cauchy problem.

1. Conservation of energy

Energy conservation was one of the properties we demanded from the start. As with any

Cauchy problem, whether or not energy is conserved depends on the boundary conditions. As

with the heat equation, Neumann boundary conditions are the appropriate ones to consider.

When discussing these mathematical results, we will use “mass” to refer to the integral of

E(x, t) over space rather than a gap in the spectrum of a field theory.

Theorem 1. If E solves
∂E

∂t
(x, t) = −∆β(E(x, t)) (x, t) ∈ Ω× (0,∞)

E(x, 0) = E0(x) x ∈ Ω

∇E(x, t) · n = 0 (x, t) ∈ ∂Ω× (0,∞)
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then M(t) =
∫

Ω
E(x, t)dx is constant.

Proof. We can show that the derivative of M is zero using Green’s first identity.

dM

dt
=

∫
Ω

∂E

∂t
dx

=

∫
Ω

∆β(E)dx

=

∫
Ω

∇ · (β′(E)∇E) dx

=

∫
Ω

β′(E)∆E +∇ (β′(E)) · ∇Edx

=

∫
∂Ω

β′(E) (∇E · n) dSx

= 0 .

Dirichlet boundary conditions would not lead to conserved energy unless we finely tuned β′

to be zero on the boundary.

2. The maximum principle

Perhaps the most ubiquitous tool in the study of elliptic and parabolic equations is the

maximum principle. Although it is sometimes introduced as a tool for studying linear

equations, many nonlinear versions of it have appeared over the years [61]. Our proof of a

suitable maximum principle will be very similar to the one in [62].

Theorem 2. Suppose that ∂u
∂t
≥ −∆β(u) and ∂v

∂t
≤ −∆β(v) for a monotonically decreasing

β. If u(x, 0) > v(x, 0) for all x ∈ Ω, there does not exist a spacetime point (x0, t0) ∈

Ω× (0,∞) for which u(x0, t0) < v(x0, t0).

Proof. First suppose that w ∈ C2(Ω× (0,∞)) is initially non-negative but not always non-

negative. Then there must exist some point (x0, t0) ∈ Ω × (0,∞) such that w(x0, t0) < 0.

We can let x0 be the position of the minimum of w(·, t0) so that ∇w(x0, t0) = 0 and

∆w(x0, t0) ≥ 0 are also satisfied. If t0 is the first time such a point occurs, ∂w
∂t

(x0, t0) ≤ 0.

Now let w(x, t) = e−At [β(v(x, t))− β(u(x, t))] where A is some positive constant. Saying

that w is non-negative is the same as saying that u ≥ v because β is monotone. Therefore if

u ≥ v initially but not always, the above says that there must be a point (x0, t0) ∈ Ω×(0,∞)

such that:
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• β(u(x0, t0)) > β(v(x0, t0))

• β′(u(x0, t0))∇u(x0, t0) = β′(v(x0, t0))∇v(x0, t0)

• −∆β(u(x0, t0)) ≥ −∆β(v(x0, t0))

• β′(u(x0, t0))∂u
∂t

(x0, t0)− β′(v(x0, t0))∂v
∂t

(x0, t0) ≥ A [β(u(x0, t0))− β(v(x0, t0))]

Since u is a supersolution and v is a subsolution, ∂u
∂t
≥ −∆β(u) and ∂v

∂t
≤ −∆β(v) can be

combined to give ∂
∂t

(u − v) + ∆ [β(u)− β(v)] ≥ 0. On the other hand, our four conditions

above can be combined into an inequality that contradicts this telling us that u cannot drop

below v if u(x, 0) ≥ v(x, 0).

First we use the fact that ∆β(u(x0, t0)) ≤ ∆β(v(x0, t0)) to write ∂
∂t

(u(x0, t0)−v(x0, t0))+

∆ [β(u(x0, t0))− β(v(x0, t0))] ≤ ∂
∂t

(u(x0, t0)− v(x0, t0)). We must now show that the differ-

ence of the time derivatives is less than zero. To do this, we note that at least one of the

following must be true:

β′(u(x0, t0))
∂u

∂t
(x0, t0)− β′(v(x0, t0))

∂v

∂t
(x0, t0) ≤ β′(u(x0, t0))

∂

∂t
(u(x0, t0)− v(x0, t0))

β′(u(x0, t0))
∂u

∂t
(x0, t0)− β′(v(x0, t0))

∂v

∂t
(x0, t0) ≤ β′(v(x0, t0))

∂

∂t
(u(x0, t0)− v(x0, t0)) .

The first one is true if ∂v
∂t

(x0, t0) and β′(v(x0, t0)) − β′(u(x0, t0)) have the same sign. The

second one is true if they have different signs. Use β′0 to denote whatever prefactor appears

in the correct statement, either β′(u(x0, t0)) or β′(v(x0, t0)). The key is that this is a negative

constant. The last inequality in our list of four can turn this into

β′0
∂

∂t
(u(x0, t0)− v(x0, t0)) ≥ β′(u(x0, t0))

∂u

∂t
(x0, t0)− β′(v(x0, t0))

∂v

∂t
(x0, t0)

≥ A [β(u(x0, t0))− β(v(x0, t0))] .

Dividing through by β′0, we get

∂

∂t
(u(x0, t0)− v(x0, t0)) ≤ A

β′0
[β(u(x0, t0))− β(v(x0, t0))] .

Using the first inequality in the list of four, we see that this is less than zero, completing

the proof.

Even though this could still be generalized further [63], it is already more general than

the maximum principle. To get the maximum principle, let v be a solution (a special case of
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a subsolution) and u be max{v(x, 0) : x ∈ Ω̄}. Since u is a constant, it is also a solution and

therefore a supersolution. The theorem above now tells us that u must continue to upper

bound v at all later times which means the maximum of v decreases with time. As always,

this is equivalent to the minimum principle which states that the minimum increases with

time. We have already seen in (79) that our PDE turns into the heat equation when the

energy distribution is close to uniform. The maximum principle tells us that our PDE is

similar to the heat equation in some respects for general energy distributions as well.

In addition to talking about the value of the maximum of E, we can gain some information

about its position. If our initial condition E0 is spherically symmetric, our equation gives

∂E

∂t
= −r1−d ∂

∂r

(
rd−1∂β(E)

∂r

)
∂

∂t

∂E

∂r
= − ∂

∂r

[
r1−d ∂

∂r

(
rd−1∂β(E)

∂r

)]
= − ∂

∂r

[
d− 1

r
β′(E)

∂E

∂r
+ β′′(E)

(
∂E

∂r

)2

+ β′(E)
∂2E

∂r2

]

=
d− 1

r2
β′(E)

∂E

∂r
− d− 1

r
β′′(E)

(
∂E

∂r

)2

− d− 1

r
β′(E)

∂2E

∂r2
− β′′′(E)

(
∂E

∂r

)3

−3β′′(E)
∂E

∂r

∂2E

∂r2
− β′(E)

∂3E

∂r3
.

Now suppose that E0 achieves its maximum at the origin and has no other local minima or

maxima. In other words ∂E0

∂r
< 0 for r 6= 0. If ∂E

∂r
were to become positive away from the

origin at some later time, it would have to first vanish. Also, since an extreme point has not

formed yet, (r0, t0) is an inflection point satisfying ∂2E
∂r2

(r0, t0) = 0 and ∂3E
∂r3

(r0, t0) < 0. Plug-

ging these into our expression above, we see that ∂
∂t
∂E
∂r

(r0, t0) = −β′(E(r0, t0))∂
3E
∂r3

(r0, t0) < 0.

If the radial derivative of E ever gets to zero, it starts decreasing again and never passes

zero to become positive. Therefore the origin is the only local extremum at all times.

3. Existence of a steady-state

We now have everything we need to discuss the behaviour of solutions in the limit of

infinite time. By setting ∂E
∂t

equal to zero, we can see that the limiting energy distribution

satisfies ∆β(E(x)) = 0 x ∈ Ω

∇E(x) · n = 0 x ∈ ∂Ω
.
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The only solutions to the Neumann problem for Laplace’s equation are constants. Therefore

β(E) must be constant in space if ∂E
∂t

= 0. There are two ways for this to happen. One is

for E to solely occupy the Hagedorn regime. If not, β is invertible in a neighbourhood of at

least one energy in the steady-state and E must be constant. By energy conservation, the

value of this constant is of course

Ē0 =
1

|Ω|

∫
Ω

E0(x)dx .

In other words, we know what limt→∞E(·, t) must be if it exists but it is not yet obvious that

it exists. Even for an energy distribution whose extrema stay in the same place and smooth

out over time, it is possible for the intermediate regions to constantly oscillate without ever

converging to any function. Our proof that this does not happen for (86) will compare it to

the heat equation.

x

E

FIG. 10: The two energy distributions shown have equal minima, equal maxima and equal

masses. They also have the central peak as their only extreme value. A solution to (86)

that alternated between these functions indefinitely would satisfy all of the properties that

we have proven so far but not have a steady-state.

Theorem 3. Suppose that E solves
∂E

∂t
(x, t) = −∆β(E(x, t)) (x, t) ∈ Ω× (0,∞)

E(x, 0) = E0(x) x ∈ Ω

∇E(x, t) · n = 0 (x, t) ∈ ∂Ω× (0,∞)
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for a spherically symmetric E0 with a central maximum as its only local extreme point. If

β′(E) ≤ 0 becomes strict whenever Emin < E < Ē0, then E converges to its average.

Proof. Letting Bd
R denote a ball of radius R, the mass satisfies

MR =

∫
BdR

Edx

dMR

dt
=

∫
BdR

∂E

∂t
dx

= −
∫
BdR

∆β(E)dx

= −
∫
Sd−1
R

β′(E)∇E · ndSx

≤ 0 .

The inequality came from the fact that the integrand is non-negative. The flux is non-

positive because the value of E must always decrease as we move away from the origin and

β′(E) is non-positive by assumption. Let R(t, ε) be the largest radius at which E(R, t) =

Ē0 − ε. If R(t) ever reaches the radius of Ω, the solution will have converged to Ē0 by

energy conservation and the maximum principle. Therefore assume the opposite and let

R = max{R(t, ε) : t > 0}. Since E(R, t) ≤ Ē0, we can make the integral larger by replacing

β′(E) with β′(Ē0).
dMR

dt
≤ −β′(Ē0)

∫
Sd−1
R

∇E · ndSx < 0

We now see that MR for our equation (86) shrinks more quickly than MR for a heat equation

with diffusion constant −β′(Ē0). The standard Fourier series method shows that the solution

to said heat equation with initial data E0 will converge to Ē0. Thus Sd−1
R , the sphere where

Ē0 is first achieved, eventually encloses a constant function. By energy conservation and

the maximum principle, E must be equal to the same constant outside this sphere as well.

Therefore for any ε > 0, the energy at the edge always comes within ε of Ē0 which means

that “the outside of this sphere” must have not existed all along.

B. Time scales

So far we have shown that the nonlinear diffusion we are interested in shares a number

of intuitive properties with linear diffusion: energy is conserved, peaks smooth out over
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time and reasonable configurations of energy will decay to a distribution that is completely

uniform. However, we still have relatively little information on how quickly these energy

distributions decay. Defining and bounding time scales for the diffusion will allow us to

compare our model to what is already known about gravitational bound states.

1. The concentration comparison theorem

E

β
Φ

FIG. 11: This shows how we must change the function that appears inside the Laplacian in

order to satisfy the hypotheses of the theorem. Bounding the time scales arising from β is

no more difficult than bounding the time scales arising from Φ.

If we continued applying the basic properties, we would be able to derive some powerful

results that are found in the literature. One of these is the concentration comparison theorem

[64] which applies to equations of the form (86) called filtration-equations. The only difference

is that filtration equations are typically written ∂E
∂t

= ∆Φ(E) where Φ is weakly increasing.

A fundamental property of diffusion is that the mass contained within a fixed ball at the

origin MR(t) should decrease. The total mass M(t) which we found to be constant in time

is M∞(t). The concentration comparison theorem, which we state below, is used to convert

an inequality involving Φ to an inequality involving MR.

Theorem 4. Let Φ1,Φ2 ∈ C1(R) be increasing functions sending 0 to 0 such that Φ′1 ≥

Φ′2. Suppose that u1 having mass M1,R(t) and u2 having mass M2,R(t) are solutions to
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∂u
∂t

= ∆Φ1(u) and ∂u
∂t

= ∆Φ2(u) respectively with spherically symmetric data. If M1,R(0) ≤

M2,R(0) for all R then M1,R(t) ≤M2,R(t) for all R and t.

To use this theorem, we must convert our function β(E) into something satisfying Φ(0) =

0. This is easily done with Φ(E) = β(Emin) − β(E + Emin). Figure 11 shows what kind of

function Φ is if β is the function in Figure 8.

E

Φ

FIG. 12: We were able to show that our filtration equation had a well defined steady-state

by comparing it to a heat equation. With this linear function as our bounding function, an

estimate for the decay time can also be obtained. However, this would lead to a crude

bound because the linear function above is not very similar to the true Φ.

∂

∂t
(E + Emin) = −∆β (E + Emin)

is now the same as saying
∂E

∂t
= ∆Φ(E)

where E0 is now some energy distribution equal to zero on ∂Ω. If we can find an exact

solution to another filtration equation whose mass shrinks more quickly than that of E, we

will have found a “decay time” that is shorter than the one we are looking for. Similarly, a

mass that shrinks more slowly would be associated with a longer “decay time”. Time scales

can therefore be determined if we choose bounding functions that are “steeper” than Φ or

“flatter” than Φ. The crudest thing we could do is find a lower bound on the decay time by

drawing a linear function above Φ. The next logical step is to find proper estimates for the

decay time by comparing our filtration equation to something more non-trivial.
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2. Estimates in one dimension

As stated before, we are considering a density of states that has two microcanonical phase

transitions. We will call the energy of the first one EH for Hagedorn and the energy of the

second one EF for field theory. A useful definition of decay time for us will be the time

required for the maximum of an energy distribution to descend from EF to EH. Specifically,

we will look at the initial condition

E0(x) =

EF |x1|, . . . , |xd| < a

0 otherwise
(87)

and see how long it takes until E(x, t) < EH for all values of x. The steep vertical jump

through the Hagedorn regime is a feature that (87) has in common with sharply peaked

initial energy distributions. The sharply peaked functions do not need to be constant at EF

but this will happen anyway once they are allowed to evolve. The distributions in Figure

13 will flatten out in a relatively short time because diffusion dominates above EF but not

below. This suggests that the decay time for a general peak is dominated by the decay time

of (87). Further evidence that (87) is representative of more general initial conditions will

appear in the next chapter on numerics. Finding the decay time of (87) with respect to a

x

E

EF

EH

FIG. 13: Except for the piece on top that will quickly diffuse, these energy distributions

are qualitatively similar to the step function we are considering.

general filtration function is still too hard, so we will pick a simple filtration function with
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the goal of using the concentration comparison theorem. The one to pick is

Φ(E) =

E E < EH

EH E ≥ EH

. (88)

If we take an energy profile solving ∂E
∂t

= ∆Φ(E) and look at it at some instant of time, the

parts with energy above EH should be static and the parts with energy below EH should

be satisfying the heat equation. Energy crosses EH at a particular distance x∗(t). Using

the method of [2], we will construct a one-dimensional solution where x∗ starts off at a and

eventually shrinks to zero indicating that the decay time T has been reached.

E(x, t) =

EF |x| < x∗(t)

F (x, t) |x| > x∗(t)
(89)

where F solves the regular heat equation. Clearly F cannot be just any solution to the heat

equation. To obey the initial condition (87), we must have F (x, 0) = 0 for |x| > a. Also, we

must impose conservation of energy. The mass contained between 0 and x∗(t) is x∗(t)EF.

The mass everywhere else is
∫∞
x∗(t)

F (x, t)dx. We want their rates of change to be equal and

opposite so

EF
dx∗(t)

dt
= − d

dt

∫ ∞
x∗(t)

F (x, t)dx

= F (x∗(t), t)
dx∗(t)

dt
−
∫ ∞
x∗(t)

∂F

∂t
(x, t)dx

= EH
dx∗(t)

dt
−
∫ ∞
x∗(t)

∆F (x, t)dx

= EH
dx∗(t)

dt
+
∂F

∂x
(x∗(t), t)

where we have differentiated under the integral sign. Therefore

(EF − EH)
dx∗(t)

dt
=
∂F

∂x
(x∗(t), t) (90)

is a necessary condition for the ansatz (89) to work. It is also sufficient as we show in

the appendix. The initial condition for F that will give us these necessary and sufficient

conditions is F (x, 0) = AΘ(x − a) where A is a yet undetermined constant that will turn

out to be between EH and 2EH. Figure 14 shows the basic setup. To solve for F , we first

60



x

E

EH

A

EF

(a) t = 0

x

E

EH

A

EF

(b) Some later time

FIG. 14: The union of the red and purple curves is what we are looking for. It is (89), the

solution to the (88) filtration equation for the (87) Cauchy data. The solution to the

auxillary problem that we use to find it is the union of the blue and purple curves. This is

F , the solution to the heat equation for the Heaviside Cauchy data.

note that the heat kernel is

ΦH(x, t) =
1

(4πt)
d
2

e−
x2

4t .

The heat equation’s Cauchy problem is solved by taking the convolution of the initial con-

dition with the heat kernel. Therefore

F (x, t) =
A√
4πt

∫ ∞
−∞

θ(y − a)e−
(x−y)2

4t dy

=
A√
4πt

∫ a

−∞
e−

(x−y)2
4t dy

=
A

2

(
1 + erf

(
a− x
2
√
t

))
. (91)

Differentiating F is now straightforward and the position of the interface can be found by

setting F (x, t) = EH. From this we obtain

∂F

∂x
(x, t) = − A√

4πt
e−

(x−a)2
4t (92)

x∗(t) = a− 2
√
terf−1

(
2EH

A
− 1

)
(93)

and the ratio between (92) at the interface and the derivative of (93) is constant.

∂F
∂x

(x∗(t), t)
dx∗(t)

dt

=
A√
4π

e
−erf−1

(
2EH
A
−1

)2

erf−1
(

2EH

A
− 1
)
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We must set this equal to EF − EH. The A we obtain from doing so is given by

A =
2EH

1 + erf(I)
∈ [EH, 2EH] (94)

√
πIeI

2

(1 + erf(I)) =
EH

EF − EH

. (95)

The transcendental equation defining I can be solved because the range of the left hand

side includes all positive real numbers. The last thing we need to do is find a more explicit

value of A for the case when EF � EH. If we were to consider
√
πIeI

2
(1 + erf(I)) = 0, the

solution would simply be I = 0. Since EH is close to zero but not quite, it is appropriate to

linearize the left hand side of (95) giving us
√
πI = EH

EF−EH
. Plugging this into (94) gives

A ≈ 2EH

1 + erf
(
EH/
√
π

EF−EH

) .
Finally, the time scale can be found by setting x∗(T ) = 0 or F (0, T ) = EH.

T =
1

4

(
a

erf−1
(

2EH

A
− 1
))2

≈ 1

4

(
a (EF − EH)

EH/
√
π

)2

≈ π

4

[
aEF

EH

]2

(96)

3. Higher dimensional generalization

The procedure above works in an arbitrary number of dimensions if the initial condition

has energy EF inside a hypercube of side length 2a. We will take F (x, 0) = Aθ(x1 −

a) . . . θ(xd − a), solve the heat equation for F with this Cauchy data and write

E(x, t) =

EF x1 < x∗1(t), . . . , xd < x∗d(t)

F (x, t) otherwise
. (97)

Performing the convolution with the heat kernel is straightforward because the solution has

a product form.

F (x, t) =
A

(4πt)
d
2

∫ ∞
−∞

. . .

∫ ∞
−∞

θ(y1 − a) . . . θ(yd − a)e−
(x−y)2

4t dy1 . . . dyd

=
A

(4πt)
d
2

∫ a

−∞
. . .

∫ a

−∞
e−

(x1−y1)
2+···+(xd−yd)

2

4t dy1 . . . dyd

=
A

2d

(
1 + erf

(
a− x1

2
√
t

))
. . .

(
1 + erf

(
a− xd
2
√
t

))
(98)
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From this we see that the surface x∗(t) where F takes on the value EH is the locus of points

x∗(t) =


a− 2

√
terf−1 (z1 − 1)

...

a− 2
√
terf−1 (zd − 1)

 (99)

where
∏

i zi = 2d EH

A
. Differentiating F and evaluating it on this surface, we get

∂F

∂xi
(x∗(t), t) =

2EH

zi

1√
4π
e−erf−1(zi−1)2 . (100)

The analogue of (90) to the higher dimensional case is

(EF − EH)
dV ∗(t)

dt
=

∫
x∗(t)

∇F (x, t) · ndSx (101)

where V ∗(t) is ad minus the volume enclosed by the surface (99) in the positive orthant.

This can be visualized in Figure 15. Clearly V ∗(0) = 0. If we want to calculate the volume

V ∗(t), we are looking for xi values that go from the x∗i (t) curve to a instead of from 0 to the

x∗i (t) curve. This is the same as saying that

z1 ∈
[
1, 2d

EH

A

]
z2 ∈

[
1,

2d

z1

EH

A

]
...

zd ∈
[
1,

2d

z1 . . . zd−1

EH

A

]
.

Each xi only depends on one zi so it is trivial to find the Jacobian determinant.

dxi
dzi

= −
√
πteerf−1(zi−1)2

∣∣∣∣dx1

dz1

. . .
dxd
dzd

∣∣∣∣ = (πt)
d
2

d∏
i=1

eerf−1(zi−1)2

Also, by multiplying all but one of these eigenvalues together, we can find the area element

required to calculate the surface integral in (101). An expression for the volume is

V ∗(t) =

∫ 2d
EH
A

1

. . .

∫ 2d

z1...zd−1

EH
A

1

∣∣∣∣dx1

dz1

. . .
dxd
dzd

∣∣∣∣ dzd . . . dz1

= (πt)
d
2

∫ 2d
EH
A

1

. . .

∫ 2d

z1...zd−1

EH
A

1

d∏
i=1

eerf−1(zi−1)2dzd . . . dz1 . (102)
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x

y

E

(a) Early time

x

y

E

(b) Later time

FIG. 15: The curve where the blue sheet intersects the evolving surface is x∗(t). The area

of the blue sheet between the surface and the co-ordinate planes is a2 − V ∗(t). We are

instead calculating the area V ∗(t) which has an equal and opposite rate of change.

We only need to know the length of ∇F to compute the surface integral. Working this out,∫
x∗(t)

∇F (x, t) · ndSx =

∫ 2d
EH
A

1

. . .

∫ 2d

z1...zd−2

EH
A

1

|∇F (x∗(t), t)|
∣∣∣∣dx1

dz1

. . .
dxd−1

dzd−1

∣∣∣∣ dzd−1 . . . dz1

=
1√
4πt

(πt)
d−1
2

∫ 2d
EH
A

1

. . .

∫ 2d

z1...zd−1

EH
A

1

2EH

√√√√ d∑
i=1

1

z2
i

e−2erf−1(zi−1)2

d−1∏
i=1

eerf−1(zi−1)2dzd−1 . . . dz1 (103)

where we have arbitrarily chosen zd as the variable to be determined from z1, . . . , zd−1. The

fact that (102) is proportional to one more factor of t than (103) is what allows (101) to be

obeyed. There is a problem with these expressions however that only rears its head when

d > 1; not all points on the surface x∗(t) reach the co-ordinate planes at the same time. In

two dimensions for instance, the endpoint a− 2
√
terf−1

(
4EH

A
− 1
)

a


will reach (0, a) before the midpoint a− 2

√
terf−1

(√
4EH

A
− 1

)
a− 2

√
terf−1

(√
4EH

A
− 1

)

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reaches (0, 0). In other words, for late times, the volume (102) includes some regions outside

the positive orthant. It is not correct to integrate xi values from a to the x∗(t) curve. We

must integrate from a to max (x∗(t), 0). The decay time obtained by setting (98) to EH is

T =
1

4

 a

erf−1
(

2
(
EH

A

) 1
d − 1

)


2

.

The expression (102) is most accurate when T is large, i.e. when A ≈ 2dEH. If this is true, we

can obtain a reasonable approximation to this complicated integral by setting V ∗(T ) ≈ ad.

Doing this, we see that

∫ 2d
EH
A

1

. . .

∫ 2d

z1...zd−1

EH
A

1

d∏
i=1

eerf−1(zi−1)2dzd . . . dz1 ≈
(

2√
π

)d
erf−1

(
2

(
EH

A

) 1
d

− 1

)d

.

With this, EF − EH becomes much easier to express.

EF − EH =

∫ 2d
EH
A

1
. . .
∫ 2d

z1...zd−2

EH
A

1 2EH

√∑d
i=1

1
z2i
e−2erf−1(zi−1)2

∏d−1
i=1 e

erf−1(zi−1)2dzd−1 . . . dz1

πd
∫ 2d

EH
A

1
. . .
∫ 2d

z1...zd−1

EH
A

1

∏d
i=1 e

erf−1(zi−1)2dzd . . . dz1

≈
2EH

√
d
(

2√
π

)d−1

erf−1
(

2
(
EH

A

) 1
d−1 − 1

)d−1

πd
(

2√
π

)2

erf−1
(

2
(
EH

A

) 1
d − 1

)d
≈ EH
√
πderf−1

(
2
(
EH

A

) 1
d − 1

)
 lim

2dEH
A
→1

erf−1
(

2
(
EH

A

) 1
d−1 − 1

)
erf−1

(
2
(
EH

A

) 1
d − 1

)

d−1

=
EH

√
πderf−1

(
2
(
EH

A

) 1
d − 1

) ( d

d− 1

)d−1

In the first step, we have used the fact that
√∑d

i=1
1
z2i
e−2erf−1(zi−1)2 ≈

√
d because z1, . . . , zd

are very close to 1 while in the last step, we have used l’Hôpital’s rule. Linearizing the

inverse error function in the denominator and solving for A, we see that

2dEH

A
=

[
1 +

EH

EF − EH

1√
πd

(
d

d− 1

)d−1
]
≈ 1 ,

which is precisely the condition we needed in the first place to be able to say that T was large

and use this approximation. Therefore when EF � EH, the time scale T in d dimensions
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becomes

T =
πd

4

[
a
EF − EH

EH

(
d− 1

d

)d−1
]2

≈ πd

4

[
aEF

EH

(
d− 1

d

)d−1
]2

. (104)

4. Upper and lower bounds

It is time to leverage these results to improve the decay time estimates for the filtration

function in Figure 12. To achieve the tightest possible bounds, we will make sure that our

more-steep and less-steep functions flatten out at EH. Figure 16 shows what this looks like.

The function on the left Φ1 has a slope Φ′1(0) equal to Φ′(0). The function on the left Φ2 has

a slope Φ′2(0) equal to limE→E−H
Φ′(E). When these slopes are determined, the concentration

comparison theorem tells us that our time scale will satisfy

πd

4Φ′1(0)

[
aEF

EH

(
d− 1

d

)d−1
]2

≤ T ≤ πd

4Φ′2(0)

[
aEF

EH

(
d− 1

d

)d−1
]2

. (105)

This is the main part of the text that will use a specific formula for β(E), so first con-

E

Φ
1

EH EF

(a) Comparing Φ to Φ1

E

Φ
2

EH EF

(b) Comparing Φ to Φ2

FIG. 16: The piecewise-linear bounding functions must relate to our filtration function in

this way. On the left, Φ1 could cross over to Hagedorn behaviour at some energy E1 ≥ EH

and on the right, Φ2 could cross over to Hagedorn behaviour at some energy E2 ≤ EH. The

tightest possible time scale bounds are achieved when E1 = EH = E2.
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sider the one that is valid when C(E) = ρ−2(E). Recall that this is β(E) = cEα−1 =

β (Emin)E1−α
min E

α−1 in the lowest energy regime. The slopes that we must insert are simple:

Φ′1(0) = −β′ (Emin) = (1− α)
β (Emin)

Emin

(106)

Φ′2(0) = −β′ (EH) = (1− α)β (Emin)
Eα−2

H

Eα−1
min

. (107)

Plugging (106) and (107) into (105), this time scale is now solved:

πd

4(1− α)β (Emin)

Emin

E2
H

[
aEF

(
d− 1

d

)d−1
]2

≤ T ≤ πd

4(1− α)β (Emin)

Eα−1
min

Eα
H

[
aEF

(
d− 1

d

)d−1
]2

.

(108)

This dependence on (aEF)2 is a general feature of long Hagedorn regions as we will see in

our next time scale. Recall that when we had C(E) = 1, the effective inverse temperature

function to consider β̃ was defined by

β̃′(E) = ρ2(E)β′(E) .

We will construct a filtration function from this in the same way as before. Φ̃(E) = β̃ (Emin)−

β̃ (E + Emin). In the low energy regime, we have

Φ̃′(E) = −ρ2 (E + Emin) β′ (E + Emin) = ρ2 (E + Emin) Φ′(E)

= (1− α)β (Emin) e
2
α

β(Emin)(E+Emin)α

Eα−1
min

(E + Emin)α−2

Eα−1
min

.

The first thing to notice is that EH is the same for Φ and Φ̃. One derivative vanishes if and

only if the other does. Also, at an energy of Emin, the number of states is very close to 1 so

Φ̃′(0) = Φ′(0). Finding the slopes of appropriate bounding functions Φ̃1 and Φ̃2 comes down

to extremizing Φ̃′.

Φ̃′′(E∗) = 0

2
β (Emin)

Eα−1
min

(1− α)Eα−1
min β (Emin) (E∗ + Emin)2α−3 = (2− α)(1− α)Eα−1

min β (Emin) (E∗ + Emin)α−3

E∗ =

[
2− α

2β (Emin)E1−α
min

] 1
α

− Emin

Therefore Φ̃ starts off with a steep derivative at 0 and becomes less steep until reaching the

inflection point E∗. This means that there are two important cases to consider: EH < E∗
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(a) EH < E∗
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Φ

EHE*

(b) EH > E∗

FIG. 17: The upper bound for the decay time, given by Φ̃2 depends on which of the above

cases is realized. The figure on the left would lead to a situation much like the one for Φ2

that we saw before. However, on the right, the Hagedorn energy is large enough to make Φ̃

change concavity before reaching the Hagedorn phase.

and EH > E∗. The flattest point occurs at EH in the former case and at E∗ in the latter.

Φ̃′1(0) = (1− α)
β (Emin)

Emin

(109)

Φ̃′2(0) =

(1− α)β (Emin)
Eα−2

H

Eα−1
min

e
2
α

β(Emin)EαH
Eα−1
min EH < E∗

(1− α)
(

2−α
2

)α− 2
α β (Emin)

2
α E

2
α
−2

min e
2
α
−1 EH > E∗

(110)

Plugging (109) and (110) into (105), the next time scale is solved as well:

πd

4(1− α)β (Emin)

Emin

E2
H

[
aEF

(
d− 1

d

)d−1
]2

≤ T ≤ CT (Emin, EH)

[
aEF

(
d− 1

d

)d−1
]2

(111)

where

CT (Emin, EH) =


πd

4(1−α)β(Emin)

Eα−1
min

EαH
e
− 2
α

β(Emin)EαH
Eα−1
min EH <

[
2−α

2β(Emin)E1−α
min

] 1
α

πd
4(1−α)

(
2−α

2

) 2
α
−α
β (Emin)−

2
α
E

2− 2
α

min

E2
H
e1− 2

α EH >
[

2−α
2β(Emin)E1−α

min

] 1
α

.

There is a third possibility; EH being so large that Φ′ (EH) surpasses Φ′(0). However, Emin

can always be made small enough to stop this from happening.
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5. Remaining problems

A useful question to ask is how our decay time differs from a decay time that would arise

from linear diffusion. Solivng the heat equation with the (87) initial data,

E(x, t) =
EF

(4πt)
d
2

∫ a

−a
. . .

∫ a

−a
e−

(x−y)2
4t dy1 . . . dyd

=
EF

2d

d∏
i=1

(
erf

(
xi + a

2
√
t

)
− erf

(
xi − a
2
√
t

))
.

The time needed for the central peak to come down to EH is

T =
a2

4
erf−1

(
EH

EF

)− 2
d

≈ a2

4

(
2EF√
πEH

) 2
d

.

For d > 1, this decay time is parametrically less than the O
(
(aEF)2) result that we found

for diffusion with a Hagedorn regime. However, linear diffusion in d = 1 is much slower. To

get a sense of why the d = 1 times are similiar, we will look at the amount of energy outside

B1
a after a short amount of time [2]. For diffusion with a Hagedorn regime, we find

aEF −Ma(t) = A

∫ ∞
a

1 + erf

(
a− x
2
√
t

)
dx

= 2A

√
t

π

≈ 4EH

√
t

π
.

For the heat equation with the same slope, the result is

aEF −Ma(t) = EF

∫ ∞
a

erf

(
x+ a

2
√
t

)
− erf

(
x− a
2
√
t

)
dx

= 2EF

√
t

π

(
1− e−

a2

t

)
+ 2EFa

(
1− erf

(
a√
t

))
≈ 2EF

√
t

π

where in the last step we have assumed t � a2. Therefore, diffusion without a Hagedorn

regime is faster at the beginning, but not over longer time scales. We can explain this effect

by noticing that a lump of energy diffusing linearly becomes remarkably flat towards the

“end” of its diffusion. Small spatial derivatives lead to small time derivatives and a long time

constant. Diffusion with a Hagedorn regime does not have this problem. The discontinuous
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solutions we saw had steep profiles during all stages of what we called the diffusion. A

different effect, the large static phase, is what lengthened the time constant. Even though

diffusion times are similar with and without a Hagedorn phase, the numerics will show that

if the energy distribution begins with a peak well above EF, its diffusion will slow down

significantly upon reaching EF. This does not contradict our analysis because the diffusion

in the high energy phase comes with a much larger constant than the diffusion that crosses

over to Hagedorn behaviour in the other two phases.

Regardless of how many dimensions there are, we should expect that our model overes-

timates the decay time of a plasma ball. The energy in our model can only diffuse away to

infinity so quickly once it leaves a ball of radius a. In a realstic plasma ball, energy escaping

the central region is quickly ejected because it is travelling through a vacuum.

C. Comments on unbounded domains

For unbounded domains such as the whole space, the only sensible energy distributions

are the ones that decay to zero and filtration equations like (86) take on many new properties.

Even though the diffusion of energy governed by a master equation should certainly be well

defined for a space that extends infinitely, we found in the last chapter that our PDE is only

a useful model for such behaviour when the energy is high. Therefore, it is not necessarily

true that a result derived for Ω = Rd applies to the entropic limit of a field theory.

1. Barriers to uniqueness

The first thing we note is that
∂E

∂t
(x, t) = −∆β(E(x, t)) (x, t) ∈ Rd × (0,∞)

E(x, 0) = E0(x) x ∈ Rd

would have many solutions if we simply looked for them in the set of all differentiable

functions. This property is well known for the heat equation. In fact, for the heat equation

[65] and similar equations [66] in the whole space, nonzero solutions have been found that

vanish at t = 0. These authors have found a restriction that must be made in order to

recover uniqueness; there must exist a paraboloid in Rd such that logE stays below it at all
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times. Because our equation is different from the heat equation, it is not yet clear that the

same condition, or a stronger one, will yield unique solutions to (86). Nevertheless, we will

impose the stronger condition that E be uniformly bounded in spacetime.

Requiring uniform boundedness is natural because it forces solutions to still obey the

maximum principle. The maximum principle phrased in terms of subsolutions and super-

solutions made no assumption about the domain being bounded, but in applying it, we set

one solution equal to the maximum of the other. Our assumption of uniform boundedness

is the only reason that we can still write u = max{v(x, 0) : x ∈ Rd} because the maxi-

mum of a continuous function is only guaranteed to exist on a compact domain. Having to

make assumptions about how solutions grow is a common theme when extending maximum

principles to the unbounded case [61]. We now turn to the question of uniqueness which is

intimately related to energy conservation.

Consider the function β(E) = − 1
m
Em which is monotonically decreasing for all m ∈ R.

The equation (86) for this choice

∂E

∂t
= ∇ ·

(
Em−1∇E

)
(112)

has been studied extensively [67–70]. It is called the porous medium equation for m ∈ (1,∞),

the fast diffusion equation for m ∈ (0, 1] and the very fast diffusion equation for m ∈ (−1, 0].

We are mainly interested in very fast diffusion because we had 0 < α ≤ 1 and m is essentially

α− 1. We are only writing m instead of α− 1 here for consistency with the literature.

Trying to naively derive conservation of energy for (112) does not work. This is related to

the fact that ∂E
∂t

does not need to be bounded at a given time, even if E is uniformly bounded.

To illustrate this, let us work with the very fast diffusion equation in one dimension. For

the initial condition E0, it is perfectly valid to choose a function that decays like |x|−k where

k > 1. For large x, this leads to a time derivative given by:

∂E

∂t
(x, 0) =

∂

∂x

[
Em−1(x, 0)

∂E

∂x
(x, 0)

]
=

∂

∂x

[
Em−1

0 (x)
∂E0

∂x
(x)

]
∼ ∂

∂x

(
x(1−m)kx−k−1

)
∼ x−mk−2 .

The exponent tells us that it is possible for E0 to decay “too quickly”. If k > 2
−m then ∂E

∂t
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is not bounded at t = 0. This affects our ability to compute

dM

dt
=

d

dt

∫ ∞
−∞

Edx .

In order to take the derivative inside the integral, there must exist an ε > 0 such that ∂E
∂t

is

bounded on (−∞,∞)× [0, ε]. We cannot do this with all k values, but even if we could, we

would still not be out of the woods.

Pick a value of k satisfying 1
−m < k < 2

−m . Since k < 2
−m

∂E
∂t

as derived above must be

finite at t = 0. Computing the time derivative of the total mass,

dM

dt
(0) =

∫ ∞
−∞

∂E

∂t
(x, 0)dx

=

∫ ∞
−∞

∂

∂x

[
Em−1(x, 0)

∂E

∂x
(x, 0)

]
dx

= Em−1
0 (x)

∂E0

∂x
(x)

∣∣∣∣∞
−∞

= 2 lim
|x|→∞

Em−1
0 (|x|)∂E0

∂x
(|x|)

∼ lim
|x|→∞

|x|−mk−1 .

Our choice k > 1
−m tells us that the time derivative of M is initially infinite. Therefore

M cannot possibly be a constant function on [0,∞). We have demonstrated that there are

infinitely many functions E0 ∈ L1(R) such that there is no energy conserving soluton to the

following: 
∂E

∂t
(x, t) =

∂

∂x

[
Em−1(x, t)

∂

∂x
E(x, t)

]
(x, t) ∈ R× (0,∞)

E(x, 0) = E0(x) x ∈ R
. (113)

As it turns out, however, for any E0 ∈ L1(R), there is [67, 69] an energy conserving solution

to the similar problem:
∂E

∂t
(x, t) =

∂

∂x

[
Em−1(x, t)

∂

∂x
E(x, t)

]
(x, t) ∈ R× (0,∞)

lim
t→0

E(x, t) = E0(x) x ∈ R
. (114)

Differential equations can only hold in open sets so the notation E(x, 0) = E0(x) really

means that any derivative of E(·, t) will converge to the corresponding derivative of E0 as

t → 0. The subtle distinction between (113) and (114) is that the only thing that needs
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to converge is the function itself. The E(·, t) will converge in L1(R) to E0 but the ∂
∂t
E(·, t)

need not converge to ∂
∂x

(
Em−1

0
∂E0

∂x

)
. In other words, dM(0)

dt
appeared to diverge because we

were still calculating it incorrectly.

Esteban, Rodriguez and Vázquez [67] showed that an energy conserving solution to the

very fast diffusion Cauchy problem exists in one dimension. However, there are also solutions

that vanish in finite time such as

E(x, t) = (T − t)

1−

(
1− e−

√
2x

1 + e−
√

2x

)2
 .

This solves (114) for m = 0 and does not conserve energy. The theorem of [67] still applies

to initial conditions like

E0(x) = T

1−

(
1− e−

√
2x

1 + e−
√

2x

)2
 ,

it just yields a different solution. In fact, for all −1 < m ≤ 0 and all initial conditions, there

are short lived solutions to (114) in addition to the one that conserves energy. One of the

following equivalent conditions is needed to make sure we are choosing the right solution.

1.
∫∞
−∞E(x, t)dx =

∫∞
−∞E0(x)dx for t ∈ (0,∞).

2. limx→±∞E
m−1(x, t)∂E

∂x
(x, t) = 0 for t ∈ (0,∞).

3. E(x, t) > 0 for (x, t) ∈ R× (0,∞).

In fact, [68] generalized this to arbitrary flux functions.

Theorem 5. Suppose E0 ∈ L1(R) and f, g ∈ L∞((0,∞)) are non-negative. Then there

exists a unique solution to

∂E

∂t
(x, t) =

∂

∂x

(
Em−1(x, t)

∂

∂x
E(x, t)

)
(x, t) ∈ R× (0,∞)

lim
t→0

E(x, t) = E0(x) x ∈ R

lim
x→∞

Em−1(x, t)
∂

∂x
E(x, t) = −f(t) t ∈ (0,∞)

lim
x→−∞

Em−1(x, t)
∂

∂x
E(x, t) = g(t) t ∈ (0,∞)

whose total mass satisfies∫ ∞
−∞

E(x, t)dx =

∫ ∞
−∞

E0(x)dx−
∫ t

0

f(s) + g(s)ds .
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The energy conserving solution that interests us is precisely the case f = g = 0. It is

important to remember that even though the vanishing flux of E is posed as a constraint,

we are still free to consider an initial profile E0 that does not have a vanishing flux. This is

an example of a problem with inconsistent initial and boundary conditions. Some numerical

methods have been written specifically to address this [71]. Infinite propogation speed

ensures that the conditions are only inconsistent on a set of measure zero. Depending on

what we specify for the flux, the distribution might “jump” to a function that decays quickly

or to a function that decays slowly. When m > 0, energy conservation in (114) is known to

hold without the complication of non-uniqueness [69].

We may summarize this discussion by saying that the maximum principle only holds

for a general (86) if we specify uniform boundedness and that uniqueness only holds for

a general (86) if we specify energy conservation. The very fast diffusion equation in one

dimension provides an example of uniqueness not holding for (86) if we only specify uniform

boundedness. Even when we have a unique energy conserving solution, the time derivative

of the total mass will not make sense at t = 0 for the perfectly good initial conditions that

are inconsistent with the boundary conditions. For those, the energy flux that vanishes for

the solution at all positive times will not vanish at t = 0.

2. Barenblatt profiles

Solutions to (86) on a bounded domain converge to their average values which means

that solutions to the same equation on the whole space should converge to zero. This will be

an L∞ convergence and not an L1 convergence because of energy conservation. One should

check whether the associated decay times on Rd have anything to do with our main time

scales (108) and (111). Some known results about the very fast diffusion equation will help

us do this. There is an important family of exact solutions to the porous medium, fast

diffusion and very fast diffusion equations given by:

U(x, t) =

[ (
4

1−m − 2d
)
t

|x|2 +Bt
2

2−d(1−m)

] 1
1−m

(115)

where B is a positive constant that determines the mass [70]. These self-similar functions

called Barenblatt solutions have a Dirac delta as their initial conditions. Solving for the
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mass,

M(t) = dωd

∫ ∞
0

U(r, t)rd−1dr

= dωd

[(
4

1−m
− 2d

)
t

] 1
1−m

∫ ∞
0

dd−1(
r2 +Bt

2
2−d(1−m)

) 1
1−m

dr

= dωd

[(
4

1−m − 2d
)
t

Bt
2

2−d(1−m)

] 1
1−m ∫ ∞

0

B
d
2 t

d
2−d(1−m) sd−1

(s2 + 1)
1

1−m
ds

= dωd

(
4

1−m
− 2d

) 1
1−m

B
d
2
− 1

1−m

∫ ∞
0

sd−1

(s2 + 1)
1

1−m
ds

=
dωd
2

(
4

1−m
− 2d

) 1
1−m

B
d
2
− 1

1−m
Γ
(
d
2

)
Γ
(

1
1−m −

d
2

)
Γ
(

1
1−m

) (116)

where we have recognized a beta function. The time that it takes for a Barenblatt profile’s

peak to reach EH is given by:

T =

EH

(
B

4
1−m − 2d

) 1
1−m
(1−m)− 2

d

. (117)

If we wanted to call this a Barenblatt profile of mass aEF, we could use the mass relation

(116) to replace B:

T =

(
4

1−m
− 2d

) 2m−d(1−m)
d(1−m)

E
d(1−m)−2

d
H

 2aEF

dωd
Γ( d2)Γ( 1

1−m−
d
2)

Γ( 1
1−m)


4
d
−2(1−m)

2−d(1−m)

. (118)

Even though this decay time is concerned with a Dirac delta of mass aEF, it upper bounds

the decay time for a box of mass aEF by the concentration comparison theorem. Things are

even nicer than this; the Barenblatt profiles attract all solutions to the Cauchy problems for

these nonlinear diffusion equations. As time goes on, general solutions E(·, t) will converge

to U(·, t) and the rate of convergence has been found [70]:

lim
t→∞

t
d

2−d(1−m) ||E(·, t)− U(·, t)||L∞ = 0 .

This means that (118) still depends on the mass in the same way as the true decay time.

Since O

(
(aEF)

4
d
−2(1−m)

2−d(1−m)

)
and O

(
(aEF)2) are very different, we should not have used results

from an unbounded domain to derive (108) and (111). Implicit in all of this is a certain

relation between d and m. Consider this list of conditions:
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1. The constant 4
1−m−2d must be positive for the Barenblatt solutions to be well defined.

2. The overall power of t in (115) must be negative in order for the peak value to decay

with time.

3. In order for the mass (116) to be finite, sd−1

(s2+1)
1

1−m
must approach zero faster than 1

s
.

4. An O

(
(aEF)

4
d
−2(1−m)

2−d(1−m)

)
decay time should decrease with the mass.

Any one of these four requirements will tell us that m > d−2
d

. Since diffusion in our model

happens when 0 < α < 1, our primary interest is −1 < m < 0. This is only above

the critical exponent in one dimension providing another reason why it was necessary to

demand a bounded domain. We know from [67, 68] that when d = 1, the very fast diffusion

equation yields infinitely many solutions and one energy conserving solution. The latter is

indeed asymptotic to the Barenblatt profile having the same mass. However, in d = 2 we

already see that there is no energy conserving solution to the very fast diffusion equation.

It would be interesting to find some analogue of (115) for bounded domains that acts as a

fundamental solution and stays well defined for all m and d.

V. NUMERICAL ANALYSIS

The expressions for our time scales rely on the fact that EF � EH in a domain that has

a large but finite size. To see how sensitively the inequalities depend on these factors, we

have undertaken a numerical test of our time scales and (108) in particular. The code used

for most simulations can be found in the appendix. One thing that is immediately visible

in the code is our decision to use initial conditions that decay according to a power law:

E0(x) = Emax

(
1

1 + x2

) k
2

.

For the very fast diffusion equation on an unbounded domain, we saw that it was possible for

the initial condition to decay too quickly (k > 1
−m). Since the nicest functions to simulate

are the ones with a finite dM
dt

(0), this rules out functions E0 that decay exponentially or

have compact support. For low energies, the relevant exponent is m + 1 = α = 9
10

. This

confines us to using k values smaller than 10 and not so much smaller that the decay takes

forever. The numerics are done on a bounded domain so dM
dt

(0) is technically finite for any
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k. However, if we were to pick k > 10, the flux at the edges would experience unbounded

growth as we made the domain larger casting doubt on our ability to trust those results.

A. Implementation details

In (86), we have been considering a function β = dS
dE

which has diffusive behaviour for

low and high energies with a Hagedorn phase and possibly a clustering phase in between.

The chosen entropy should be of the Super Yang-Mills type (46) where

S(E) ∼



E
9
10 E < EH

E EH < E < E ′F

E
8
7 E ′F < E < EF

E
3
4 E > EF

.

A smooth approximation to this can be accomplished with the function:

S(E) =

(
E

EH

) 9
10
(

1 +
E

EH

) 1
10
(

1 +
E

E ′F

) 1
7
(

1 +
E

EF

)− 11
28

. (119)

However, the clustering phase where S is convex is difficult to simulate numerically and our

results including (108) have neglected it. Assuming that E ′F = EF so that this phase does

not exist, we arrive at:

S(E) =

(
E

EH

) 9
10
(

1 +
E

EH

) 1
10
(

1 +
E

EF

)− 1
4

. (120)

Plotting the β(E) derived from these two functions, we see a slight problem. After the flat

region of (119), β(E) increases reaching a local maximum. After this it begins to decrease

more and more quickly until it reaches a point of inflection and asymptotically approaches

0. The plot for (120), on the other hand, does not look very flat in any region and seems to

always be asymptotically approaching 0. There is no point of inflection where some other

behaviour “crosses over” to E−
1
4 behaviour. We will now show by brute force that there is

no inflection point, ruling out the possibility that this only happens for certain EH and EF.

Claim 1. For any N > 0, β : R>0 → R defined by

β(x) =
9

10
x−

1
10 (1+x)

1
10

(
1 +

x

N

)− 1
4
+

1

10
x

9
10 (1+x)−

9
10

(
1 +

x

N

)− 1
4− 1

4N
x

9
10 (1+x)

1
10

(
1 +

x

N

)− 5
4

has no point of inflection.
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E

β

(a) E′F 6= EF

E

β

(b) E′F = EF

FIG. 18: One the left is the derivative of (119) showing the three phases. The simplest

choice for removing the clustering phase leads us to differentiate (120), the plot on the

right.

Proof. First we will write

β′(x) = − 9

100

(
1 +

x

N

)− 1
4
[
x−

11
10 (1 + x)

1
10 − 2x−

1
10 (1 + x)−

9
10 + x

9
10 (1 + x)−

19
10

]
− 1

20N

(
1 +

x

N

)− 5
4
[
9x−

1
10 (1 + x)

1
10 + x

9
10 (1 + x)−

9
10

]
+

5

16N2
x

9
10 (1 + x)

1
10

(
1 +

x

N

)− 9
4
.

Now the equation β′′(x) = 0 becomes:

9

1000

(
1 +

x

N

)− 1
4
[
11x−

21
10 (1 + x)

1
10 − 3x−

11
10 (1 + x)−

9
10 − 27x−

1
10 (1 + x)−

19
10 + 19x

9
10 (1 + x)−

29
10

]
+

27

400N

(
1 +

x

N

)− 5
4
[
x−

11
10 (1 + x)

1
10 − 2x−

1
10 (1 + x)−

9
10 + x

9
10 (1 + x)−

19
10

]
+

3

32N2

(
1 +

x

N

)− 9
4
[
9x−

1
10 (1 + x)

1
10 + x

9
10 (1 + x)−

9
10

]
− 45

64N3
x

9
10 (1 + x)

1
10

(
1 +

x

N

)− 13
4

= 0

3

125

(
1 +

x

N

)3 [
11(1 + x)3 − 3x(1 + x)2 − 27x2(1 + x) + 19x3

]
+

9

50N

(
1 +

x

N

)2 [
x(1 + x)3 − 2x2(1 + x)2 + x3(1 + x)

]
+

1

4N2

(
1 +

x

N

) [
9x2(1 + x)3 + x3(1 + x)2

]
− 15

8N3
x3(1 + x)3 = 0

625x6 + (2500N + 1625)x5 + (7250N + 2275)x4 + (9250N + 819)x3

+(2340N2 + 3402N)x2 + (720N3 + 972N2)x+ 264N3 = 0 .

Even though we cannot factor this sixth degree polynomial, we may conclude that it has no

positive real roots via Descartes’ rule of signs.
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What we should take away from this is that removing the clustering phase by hand is

too crude to give us a good filtration function to use in the numerics. Instead we will use

a function like the one plotted in Figure 19 where quadratic interpolation has been used

to guarantee that it is differentiable and decreasing with an almost-flat section and two

inflection points.

0 5 10 15
E

0

0.5

1

1.5

2

β

FIG. 19: For this function, the flat section begins at E = 1.0. The region 0.5 < E < 1.0 is

used to interpolate between the flat section and the E−
1
10 power law. The flat section ends

at E = 0.9EF and the E−
1
4 power law begins at E = EF. In the region 0.9EF < E < EF, a

parabola again interpolates. The plot is for EF = 10.0 but this general rule has been

followed for all EF.

1. The Crank-Nicolson method

Now that the form of (86) has been decided, we need a method capable of finding ap-

proximate solutions to it. Our PDE involves time and space, so it is natural to discretize
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space and reduce it to the following set of coupled ODEs:

d

dt
Ei(t) = fi(E(t), t)

fi(E(t), t) = −β(Ei+1(t))− 2β(Ei(t)) + β(Ei−1(t))

(dx)2
.

The simplest method for integrating this type of ODE system is the forward Euler method:

Ei(t+ dt) = Ei(t) + fi(E(t), t)dt . (121)

One might expect a method like (121) to be accurate as long as dx and dt are small.

However, one can use the heat equation to show that things are not so simple. Figure

-2 -1 0 1 2
x

0.2

0.4

0.6

0.8

E

t = 0.0
t = 0.025

(a) dt = 0.005, dx = 0.1

-2 -1 0 1 2
x

0.2

0.4

0.6

0.8

E

t = 0.0
t = 0.025

(b) dt = 0.005, dx = 0.05

FIG. 20: A standard demonstration that the forward Euler method is numerically unstable

for the heat equation.

20 shows that making the discretization smaller is not always an improvement. To avoid

numerical instabilities, the restriction that must be obeyed is dt < 1
2
(dx)2. This is the

precise restriction for the heat equation but a nonlinear equation would suffer from a similar

restriction. This is especially harsh for investigating the long decay times associated with a

Hagedorn phase. Although they are more difficult to apply, there are other methods known

to be stable for large timesteps [72]. One of these is the backward Euler method:

Ei(t+ dt) = Ei(t) + fi(E(t+ dt), t+ dt)dt . (122)

In (121), we evolve E forward in time by adding the derivative that it has now. In (122)

which looks similar, we add the derivative that it will have after we add it. Since some
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inversion is clearly necessary, we refer to this type of method as an implicit method. In

this work, we will use the average of the forward and backward Euler methods, known as

the Crank-Nicolson method. In order to isolate Ei(t + dt) in (122) when treating the heat

equation, we must solve a system of linear equations - one for each site in the lattice. For

a nonlinear equation like (86), these become nonlinear algebraic equations, and hence often

require numerical methods themselves. Something that might look familiar is:

-200 -100 0 100 200
x

50

100

150

E

(a) Linear scale

-6 -4 -2 0 2 4 6
sgn(x) * log(1 + x)

1

2

3

4

5

lo
g(

1 
+ 

E)

(b) Modified logarithmic scale

FIG. 21: Typically we will work with an initial condition like that shown in red. The

width of the domain is chosen so that all of the function’s mass can fit below the Hagedorn

energy in blue. The plot on the left shows that E0(x) is very flat for most of the x values.

An adaptive dx makes sense and will be chosen so that the minimum dx is much smaller

than the distance between the inflection points. The plot on the right shows the graph of

the same function but more conveniently.

xn+1 = xn −
f(xn)

f ′(xn)
.

This is Newton’s method where the sequence converges to a zero of f unless the initial guess

x0 is sufficiently far away. The derivative becomes the Jacobian when we have more than

one variable.

g′(En(t+ dt))ij(E
n+1
j (t+ dt)− En

j (t+ dt)) = −gi(En(t+ dt))

gi(E(t+ dt)) = Ei(t) + fi(E(t+ dt))dt− Ei(t+ dt) (123)

We should solve this (tridiagonal) linear system for an initial guess of E0
i (t + dt) = Ei(t)

since dt is small enough to not change the energy much with each step. The Crank-Nicolson
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method for us is then

Ei(t+ dt) =
1

2
[Ei(t) + fi(E(t))dt+ E∞i (t+ dt)]

fi(E(t)) = −β(Ei+1(t))− 2β(Ei(t)) + β(Ei−1(t))

(dx)2
, (124)

with E∞i (t+ dt) generated in the (123) way. One aspect of this which is still undesirable is

having a constant dx. Given the energy profiles we wish to evolve, it will be more convenient

to have dx depend on i so that the lattice can be finely grained in regions where the energy

profile changes the most. Figure 21 shows the need for a variable spatial step and also

establishes the conventions we will use to have logarithmic axes.

2. Convergence tests

We wish to test this algorithm, but do not have any exact solutions at our disposal. To

verify that our finite difference scheme converges to a solution as O(h2) ≡ O((dx)2), there

is a useful test suggested by [73] based on the Richardson expansion:

Eh(x, t) = E(x, t) + e2(x, t)h2 + e4(x, t)h4 + . . . . (125)

Here Eh is the approximate solution computed by the Crank-Nicolson method, which differs

from the exact solution according to functions e2, e4, etc. If we choose different discretiza-

tions, dx ∈ {h, 2h, 4h} for example, (125) states that for a given (x, t),

Q(t) = lim
h→0

E4h(x, t)− E2h(x, t)

E2h(x, t)− Eh(x, t)
= lim

h→0

16h2 − 4h2

4h2 − h2
= 4 .

As a better check, we will compare the 2-norms of the numerical solutions instead of choosing

a single point x.

Q(t) = lim
h→0

∣∣∣∣E4h(·, t)− E2h(·, t)
∣∣∣∣
`2

||E2h(·, t)− Eh(·, t)||`2
= 4 (126)

Plotting this for five different values of h, it looks like Q(t) = 2. This would be expected for

a non-centred finite difference method whose Richardson expansion looks like:

Eh(x, t) = E(x, t) + e1(x, t)h+ e2(x, t)h2 + . . . .

Our departure from the expected error O(h2) is likely a result of the nonlinear algebraic

equations. As soon as we use Newton’s method, Crank-Nicolson is not being followed exactly
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FIG. 22: The factor Q(t) plotted for simulations that lasted t = 90.0. The grid was

uniform and five step sizes were used.

and an O(h) error can be introduced. Linear combinations such as 2Eh − E2h can be used

to cancel this error term in a technique called Richardson extrapolation. This has been

successfully used for other diffusion equations with the Crank-Nicolson method [74].

B. Simulation results

Going ahead with the Crank-Nicolson method, one can print out slices of the energy

every so often to see how it is diffusing. The numerics make it clear that there are two

time scales of interest. What we have predicted in (108) is the long decay time needed for

a distribution of energy to descend below EH. Before this, the distribution will reach EF or

some number close to it, at what we call the termalization time. Figure 23 shows that for

a variety of initial conditions, the energy profiles are qualitatively similar to step functions

when this happens.
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(b) Narrower function

FIG. 23: These initial conditions with the same total mass both evolve toward a state that

has a flat line in the high energy phase near EF = 10.0.

(a) Same peak (b) Same mass

FIG. 24: Two plots of the thermalization time for field theory energy EF = 10.0 and

different values of k in the initial condition.

1. Short time dynamics

The left plot in Figure 23 uses the E0(x) = 200
(

1
1+x2

) k
2 form. It is fairly clear from

the figure that the profile is flattening out somewhere above log (1 + EF) = log 11. After

interpolation, the effective Hagedorn and field theory energies become slightly shifted with

respect to the parameters EH and EF. Therefore to measure thermalization times as a
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FIG. 25: A plot of how the peak energy moves down with time. This corresponds to the

k = 9 decay in Figure 24.

function of k, we have used 3
2
EF as a rule of thumb for where the peak energy should be.

After making a plot for five values of k, we see that the thermalization time is much more

sensitive to variations in LEF/M than EF/Emax.

Another trend we may investigate is how E(0, t) behaves as a function of t. Plotting

this for k = 9 will give us Figure 25. After a slow start at early times, the plot becomes

steeper before levelling off again. This basic shape holds for other k values as well. It is

different from the decay of a Barenblatt profile which would always have E(0, t) as a power

law. The time t∗ when E(0, t) is changing most quickly appears somewhere in Figure 25.

If we work with the functions having similar thermalization times (the ones normalized to

have the same mass), we find that t∗ ≈ 0.6T ∗ in all five cases. The ratio between d
dt
E(0, t∗)

and the average rate of change in the interval (0, T ∗) is about 1.8. We have not found a way

to predict these numbers analytically.

2. Long time dynamics

The next step is to wait until E(0, t) < EH. An example of what this diffusion looks like is

in Figure 26. This time, T � T ∗ is predicted in (108) to depend on the squared mass. After

all, a cylinder of radius a and height EF has a volume of 2aEF if the base is one-dimensional.
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FIG. 26: This shows one of our initial conditions diffusing all the way through the

Hagedorn regime. It takes about a hundred times longer to do this than it does to reach

the thermalization time.

FIG. 27: A plot of the decay time for EF = 10.0, EH = 1.0 and five values of k. Even

though they specify different shapes for the initial condition, the times are all within 4% of

eachother.
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FIG. 28: A plot of the decay time for k = 9, EH = 1.0 and five values of EF. Even though

the profiles begin to flatten out at different heights, their final decay times are all within

0.4% of eachother.

When investigating the short time dynamics, initial conditions of five different shapes were

normalized to have the same mass. Since T ∗ was found to be almost the same for them, it

is no surprise that T shares this property. Figure 27 shows a plot of these times. As long

as the mass is kept constant, early and late time dynamics are largely insensitive to k so we

will use the initial condition

E0(x) = 200

(
1

1 + x2

) 9
2

(127)

from now on. The major quantity we have not changed yet is the EF/EH ratio. We have

always had EF = 10.0 and EH = 1.0 so far. As we know in one dimension, T is proportional

to M2 and not a power of EF. Whether or not we can change EF and leave T invariant

will be the real test of (108). The condition 1.0 = EH � EF � Emax = 200.0 needs to

be satisfied so we will choose a few 10.0 ≤ EF ≤ 20.0 values. The decay times for these

choices, plotted in Figure 28, are remarkably close. The exact prefactors in (108) still need

to be checked but it turns out that they are not very constraining. We know that α = 9
10

and taking the length L from the code, we can plug it into (127) to find Emin = E0(L).
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Because Emin is so small, the prefactor multiplying M2 in the upper bound from (108) is

very different from the prefactor multiplying M2 in the lower bound from (108). In this

simulation, they differ by a factor of

Eα−2
min =

(
8.69 · 10−19

) 9
10
−2

= 7.36 · 1019 ,

which is much larger than any of the numbers put into the simulation by hand.

3. Higher dimensions

(a) Zoomed in (b) Zoomed out

FIG. 29: On the left is a plot of the decay time in two dimensions for k = 9, EH = 1.0 and

five values of EF. These are much smaller than the one-dimensional decay times in Figure

28. The zoomed out version on the right shows that even though these dots do not vary

linearly, they are sandwiched between two bounds which do vary linearly. For the sake of

the plot, the blue lines have been understated. In reality the lower bound is much closer to

being horizontal and the upper bound is much closer to being vertical.

Good agreement between our prediction and the numerical results has been demonstrated

in one dimension. In our case, extending the numerics to higher dimensions is simple because

we are focusing on spherically symmetric data. Our equation becomes

∂E

∂t
= −r1−d ∂

∂r

(
rd−1∂β(E)

∂r

)
= −∂

2β(E)

∂r2
− d− 1

r

∂β(E)

∂r
.
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This adds a term with a single spatial derivative to our one-dimensional equation from

before. A plot like Figure 28 should no longer be expected because T in (108) is no longer

proportional to M2. In two dimensions, (aEF)2 = (a2EF)EF ∝ MEF. This means we are

looking for a decay time that varies linearly with the field theory energy. After modifying the

Crank-Nicolson code in the appendix, two-dimensional simulations testing this have been

performed. The results, plotted in Figure 29, do not appear to be proportional to EF. The

EF = 20.0 decay time is much less than twice the EF = 10.0 decay time. Even though the

times scale differently from the bounds in (108), they do not actually violate the bounds

because of the extreme prefactors that differ by a factor of 1019.

The typical values for T differ greatly between dimensions one and two. More generally,

the decay times when d ≥ 2 are much smaller than when d = 1. One dimension is special

because it is only in this case that the α < 1 Barenblatt profile exists. Figure 29 shows

decay times that are only nonzero because of the bounded domain - a phenomenon known

as instantaneous extinction. This states that T → 0 as Emin → 0, or in other words, the

process we are simulating is not well defined in infinite volume.

VI. ROOM FOR IMPROVEMENT

The dynamics of our model have shown many similarities to plasma balls but there are

three main problems. To start, our solutions show that energy diffuses to infinity rather

slowly once it escapes the central region. The phenomenon of decay via hadron ejection

is not realized. A more serious problem is the instantaneous extinction we have seen for a

lattice with two or more dimensions. Finally, we have seen that some punishing prefactors

allow the admissible decay times to span several orders of magnitude.

Though one can imagine several ad hoc changes to our model that might eliminate these

problems, an extension that refers to conserved quantities other than energy is physically

well motivated. The remainder of this thesis will focus on developing an explicit PDE

description for the momentum in a Poincaré invariant theory.
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A. A common approximation

There is already a widely applicable PDE framework called hydrodynamics that puts

energy and momentum on equal footing. Hydrodynamics is concerned with systems that

are close to equilibrium. Because of this, a system may deviate from a translation invariant

state only slightly leading to slowly varrying charges E(x, t), P(x, t) and Q(x, t). These are

associated with long distance variations in their sources T (x, t), v(x, t) and µ(x, t) respec-

tively.

A theory with a symmetric stress-energy tensor and a U(1) current has d+ 1 + (d+1)(d+2)
2

independent components. It is therefore not possible to describe every system using the d+2

hydrodynamic variables above. Nevertheless, hydrodynamics provides a good description of

field theories with high occupation numbers and has demonstrated a particular aptitude for

problems relating to plasma balls and black holes.

1. Basic hydrodynamics

The hydrodynamics equations are nothing but the local conservation laws

∂µT
µν = 0

∂µJ
µ = 0 . (128)

The conserved currents are built from T , µ and uµ making this a system of d+ 2 equations

for d+ 2 unknown functions (the velocity satisfies u2 = −1). The rules for writing (128) in

terms of the hydrodynamic variables are called the constitutive relations. There is no limit

to how complicated the constitutive relations might be so it is helpful to use the assumption

that the functions are slowly varrying. This allows one to consider different versions of

hydrodynamics based on how many derivatives are kept. In zeroth order hydrodynamics,

the temperature, velocity and chemical potential are not differentiated in the expressions

for T µν and Jµ. In first order hydrodynamics, they are differentiated at most once. These

orders are often referred to as “ideal” and “dissipative” hydrodynamics. It is important to

note that this is different from the linearization of hydrodynamics. Nonlinear equations (e.g.

the Navier-Stokes equations) can easily arise from zeroth or first order hydrodynamics, so it

is common to introduce a further order-by-order expansion that drops terms with too many

variables multiplied together.
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The first step in developing constitutive relations is decomposing the currents into com-

ponents that are transverse and longitudinal with respect to uµ. This leads to

T µν = Euµuν + P∆µν + (qµuν + qνuµ) + tµν

Jµ = Nuµ + jµ (129)

where we have defined the projector ∆µν = ηµν +uµuν . Transverse quantities like jµ, qµ and

tµν cannot be built out of T , µ and uµ without derivatives. Therefore ideal hydrodynamics

takes the form:

T µν = εuµuν + P∆µν

Jµ = nuµ . (130)

The pressure P , while not a charge or a source, is usually given in terms of sources by an

equation of state P (T, µ). Going to the fluid’s rest frame makes it clear that ε is the energy

density and n is the charge density.

Things become more complicated when we include one order of dissipation [75]. Looking

at (129), many quantities such as uµ, qµ and jµ depend on position for a general non-

equilibrium configuration. There is nothing that prevents us from changing uµ to a different

function of spacetime as long as qµ and jµ change as well to keep T µν and Jµ invariant.

This redundancy, similar to a gauge freedom, is called frame invariance in hydrodynamics

[76]. Consider a shift u′µ(x, t) = uµ(x, t) + δuµ(x, t). To preserve the normalization, δuµ is

transverse to uµ. Using the inverse of (129), corresponding changes in the coefficients can

be calculated to first order.

E = uµuνT
µν

δE = 2uµδuνT
µν = 2uµδuνt

µν ≈ 0

P =
1

d
∆µνT

µν

δP =
2

d
uµδuνT

µν ≈ 0

N = −uµJµ

δN = −δuµJµ = −δuµjµ ≈ 0 .

Note that purely dissipative quantities like jµ and tµν become second order when multiplied

by δuµ. These are all zero which explains why we could write down (130) without worrying
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about frame invariance. The same analysis would give δtµν = 0 as well. Conversely,

qµ = −∆µαuβT
αβ

δqµ = −δuβTµβ − 2uµδuαuβT
αβ − δuµuαuβTαβ

= −Pδuµ − qβuµδuβ − δuβtµβ + 2uµδuαq
α − Eδuµ

≈ −(E + P)δuµ

jµ = ∆µνJ
ν

δjµ = uµδuνJ
ν + uνδuµJ

ν

= uµδuνj
ν −N δuµ

≈ −N δuµ .

We see that a suitable definition of local velocity reduces the number of terms in (129). The

one that makes jµ = 0 is called the Eckart frame while the one that makes qµ = 0 is called

the Landau frame. Naturally, T ′(x, t) = T (x, t) + δT (x, t) and µ′(x, t) = µ(x, t) + δµ(x, t)

are allowed shifts of the other hydro variables. Under these redefinitions, the coefficients

from (130) become

ε(T ′, µ′) = ε(T, µ) +
∂ε

∂T
δT +

∂ε

∂µ
δµ

P (T ′, µ′) = P (T, µ) +
∂P

∂T
δT +

∂P

∂µ
δµ

n(T ′, µ′) = n(T, µ) +
∂n

∂T
δT +

∂n

∂µ
δµ .

This means we can define temperature and chemical potential such that E = ε and N = n

[75].

Choosing the Landau frame, constitutive relations are expressions for the scalar P , the

transverse vector jµ and the transverse traceless symmetric tensor tµν . These may contain

any combination of T , µ and uµ with one derivative. However, the equations of zeroth

order hydrodynamics (130) give relations between many of these terms up to higher order

corrections. The Landau frame expressions that follow from this are:

T µν = εuµuν +
(
P − ζ∂λuλ

)
∆µν − η∆µα∆νβ

(
∂αuβ + ∂βuα −

2

d
ηαβ∂λu

λ

)
Jµ = nuµ − σT∆µν∂ν

(µ
T

)
+ χT∆µν∂νT . (131)

The frame invariant parameters ζ, η and σ are functions of T and µ that must be determined

from experiment or the microscopic theory. They are called the bulk viscosity, shear viscosity

92



and conductivity respectively. It turns out that χT must be zero for time-reversal invariance

to be satisfied. The linearization of (131) will be important in what follows.

We linearize around the equilibrium solution which has constant hydro variables and

zero velocity. This allows us to write uµ = (1, vi). Explicitly, what we seek are evolution

equations for

J0(x, t) = n(T (x, t), µ(x, t))

≈ n(T0, µ0) +

(
∂n

∂T

)
0

δT (x, t) +

(
∂n

∂µ

)
0

δµ(x, t)

≡ n0 + ñ(x, t)

T 00(x, t) = ε(T (x, t), µ(x, t))

≈ ε(T0, µ0) +

(
∂ε

∂T

)
0

δT (x, t) +

(
∂ε

∂µ

)
0

δµ(x, t)

≡ ε0 + ε̃(x, t)

T 0i(x, t) = (ε(T (x, t), µ(x, t)) + P (T (x, t), µ(x, t)))vi(x, t)

≈ (ε0 + P0)vi(x, t)

≡ P̃ i(x, t) .

It is important to remember that most coefficients in (130) and (131) are functions of T and

µ. Their derivatives evaluated at T0 and µ0 should therefore appear in the linearization.

These derivatives, known as susceptibilities, do not have a functional dependence on T and

µ anymore; they are simply numbers. For this reason, we should not be worried if the

linearized hydrodynamics equations appear to have more coefficients than the six we have

seen so far. One equation of hydrodynamics is always the continuity equation ∂ε
∂t

= ∂iT
0i.

It is easy to see that this becomes
∂ε̃

∂t
= ∂iP̃

i (132)

because it is already linear. The equation involving stresses linearizes to

∂P̃ j

∂t
= ∂i

[(
P − ζ∂kvk

)
δij − η

(
∂ivj + ∂jvi − 2

d
δij∂kv

k

)]
= ∂i

[(
P − ζ

ε0 + P0

∂kP̃
k

)
δij − η

ε0 + P0

(
∂iP̃ j + ∂jP̃ i − 2

d
δij∂kP̃

k

)]
= ∂i

[
δij
(
∂P

∂ε

)
0

ε̃+ δij
(
∂P

∂n

)
0

ñ+ δij
2
d
η0 − ζ0

ε0 + P0

∂kP̃
k − η0

ε0 + P0

(
∂iP̃ j + ∂jP̃ i

)]
=

(
∂P

∂ε

)
0

∂j ε̃+

(
∂P

∂n

)
0

∂jñ+
2−d
d
η0 − ζ0

ε0 + P0

∂j∂kP̃
k − η0

ε0 + P0

∂k∂
kP̃ j . (133)
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Finally, to handle the U(1) current

∂ñ

∂t
= ∂i

[
nvi − σTδij∂j

(µ
T

)]
= ∂i

[
n0

ε0 + P0

P̃ i − σTδij∂j
(µ
T

)]
= ∂i

[
n0

ε0 + P0

P̃ i − σ0Tδ
ij

(
∂µ/T

∂ε

)
0

∂j ε̃− σ0Tδ
ij

(
∂µ/T

∂n

)
0

∂jñ

]
=

n0

ε0 + P0

∂iP̃
i − σ0T

(
∂µ/T

∂ε

)
0

∂i∂
iε̃− σ0T

(
∂µ/T

∂n

)
0

∂i∂
iñ . (134)

It is interesting to note that the continuity equation (132) effectively splits into two equations

in non-relativistic hydrodynamics. In this limit, one must insert the speed of light back into

(131) and collect powers of c. Taking c → ∞, inverse powers vanish leaving only O(c) and

O(1) terms in the hydro equations. Since these orders can be considered separate, they yield

conservation of mass and conservation of kinetic energy [77].

Matching the predictions of hydrodynamics with those of the interaction picture leads

to the Kubo formulas. A simple Kubo formula can be derived for the diffusion constant in

the heat equation ∂n
∂t
−D ∂2n

∂x2
= 0. Performing a two-sided Fourier transform in space and a

one-sided Fourier transform in time, the equation can be solved as

n(k, z) =
n0(k)

Dk2 − iz
=

χµ0(k)

Dk2 − iz
. (135)

We assume that the initial buildup of charge is due to a local chemical potential that existed

before t = 0. If this chemical potential increased adiabatically starting at t = −∞, the

corresponding perturbation to the Hamiltonian is given by

H 7→ H −
∫ ∞
−∞

µ(x, t)n(x, t)dx

= H −
∫ ∞
−∞

eεtµ0(x)θ(−t)n(x, t)dx

≡ H − δH .

Heisenberg’s equation now gives

d

dt
〈n(x, t)〉 = −i 〈[n(x, t), δH(x, t)]〉

〈n(x, t)〉 = −i
∫ t

−∞

∫ ∞
−∞

eεt
′
µ0(x)θ(−t′) 〈[n(x, t), n(x′, t′)]〉 dx′dt′

= −i
∫ 0

−∞

∫ ∞
−∞

eεt
′
µ0(x)θ(t− t′) 〈[n(x, t), n(x′, t′)]〉 dx′dt′

= −
∫ o

−∞

∫ ∞
−∞

eεt
′
µ0(x)GR

nn(t− t′, x− x′)dx′dt′ .
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Here GR
nn(t − t′, x − x′) is the retarded Green’s function of n with itself. The one fact we

need is that the zero mode of GR
nn is the susceptibility −χ. It is a matter of complex analysis

to show that

〈n(k, z)〉 = −µ0(k)

∫ ∞
−∞

GR
nn(ω, k)

1

(ε+ iω)(ε+ i(ω − z))

dω

2π

=
µ0(k)

iz

[
GR
nn(0, k)−GR

nn(z, k)
]

=
iµ0(k)

z

[
χ+GR

nn(z, k)
]
. (136)

Comparing (135) to (136), we see that a quantum theory well described by linear diffusion

should be one whose momentum space retarded Green’s function is χDk2

iz−Dk2 . A calculation

that is longer but equally straightforward has the linear hydrodynamics equations in place

of the heat equation. This is done in [75]. Additionally a field theory is developed that

allows one to compute corrections to the Green’s functions arising from small nonlinearities

in the hydrodynamics equations.

2. The fluid / gravity correspondence

Correlation functions in certain CFTs are related to supergravity amplitudes in certain

AdS backgrounds. The link between Green’s functions and linearized hydrodynamics opens

up the possibility of describing fluid phenomena using gravity. This was demonstrated in

[78] which found that the shear viscosity in Super Yang-Mills theory is given by η = π
8
N2T 3.

By now it is known that in arbitrary dimension, the holographic shear viscosity differs from

the entropy density by a factor of 1
4π

[79]. A major result of 2007 is that all transport

coefficients in the fluid stress-energy tensor can be algorithmically found from the gravity

side as well [80]. This expansion, which is valid to all orders, is called the fluid / gravity

correspondence.

In the examples discussed previously, we related the energy of a state on the boundary

of AdS to the mass of a black hole in the bulk. More generally, there is a systematic way

to find the boundary stress-energy tensor corresponding to a given bulk metric [81, 82].

Because every metric yields a conserved stress-energy tensor, it is not surprising that the

fluid / gravity correspondence exists. However, the limit in which temperature and velocity

suffice to describe T µν could have corresponded to an intractable gµν . Showing otherwise,
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[80] started with the metric

ds2 = L2

[
−ρ2

(
1− 1

zd0ρ
d

)
dv2 + 2dvdρ+ ρ2dxidx

i

]
. (137)

This is nothing but the black brane (54) written in ingoing Eddington-Finkelstein co-

ordinates with ρ = 1
z
. Boosting the brane to a particular velocity, this becomes

ds2 = L2

[
−ρ2

(
1− 1

zd0ρ
d

)
uµuνdx

µdxν − 2uµdx
µdρ+ ρ2∆µνdx

µdxν
]
. (138)

Greek indices have been used for all co-ordinates except ρ which is not in the field theory.

The key step is to promote z0 (which determines the temperature) and uµ to slowly varrying

functions of spacetime. One could repeat the calculation for a charged black hole if she

wanted chemical potential to vary as well. Clearly, these functions are heavily constrained

for (138) to still solve Einstein’s equations. The constraints turn out to be those of hy-

drodynamics with infinitely many orders of dissipation. Put another way, we may say that

temperature and velocity functions satisfying SYM hydrodynamics at a given order, cause

(138) to only violate Einstein’s equations at a higher order.

Instead of making z0 and uµ functions of x, [80] makes them functions of εx to keep

track of derivatives before setting ε = 1. Using g(0) to denote the metric of (138), g(0)

with unconstrained z0 and uµ has a stress-energy tensor like (130) and violates the Einstein

equations at order ε. To correct this and make the violation order ε2, one must do two

things. The first is to write z0 = z
(0)
0 + εz

(1)
0 , uµ = u

(0)
µ + εu

(1)
µ so that g(0) picks up terms of

order ε. When these corrections are explicitly calculated, z
(1)
0 e.g. will be some multiple of

a derivative of z
(0)
0 . The second is to add a new piece of the metric g = g(0) + εg(1). If we

plug this new metric into Einstein’s equation, a vanishing ε term will dictate that z
(0)
0 and

u
(0)
µ satisfy ideal hydrodynamics (130). It will also allow us to compute the corrected metric

and show that it corresponds to the stress-energy tensor (131). The result of this is [56]

ds2 = L2

[
−ρ2

(
1− 1

z
(0)d
0 ρd

)
u(0)
µ u(0)

ν dxµdxν − 2u(0)
µ dxµdρ+ ρ2∆(0)

µν dx
µdxν

+2ρ2z
(0)
0 F

(
z

(0)
0 ρ
)(

∆(0)
µα∆

(0)
µβ

(
∂αu(0)β + ∂βu(0)α

)
− 1

d− 1
∆(0)
µν ∂λu

(0)λ

)
dxµdxν

+
2

d− 1
ρu(0)

µ u(0)
ν ∂λu

(0)λdxµdxν − ρu(0)λ∂λ
(
u(0)
µ u(0)

ν

)
dxµdxν

]
(139)

where

F (x) =

∫ ∞
x

yd−1 − 1

y(yd − 1)
dy .
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Of course (139) is still in the form of (138). The choice to not collect all the dxµdxν terms

makes it easy to see the non-derivative part whose components satisfy ideal hydrodynamics.

Continuing the procedure with z
(2)
0 and u

(2)
µ and g(2), these same components are constrained

to satisfy dissipative hydrodynamics. Rather than (139) associated with the dissipative

stress-energy tensor (131), Einstein’s equations then yield a longer metric associated with

the stress-energy tensor for a conformal fluid at two orders of dissipation. This logic continues

inductively showing many non-trivial constitutive relations. Beyond just conformal fluids,

similar constitutive relations may be derived for fluids in spaces with compactified directions.

These relations have been used to study plasma balls and other objects that appear in the

Witten model [83–85]. These studies assume that a black hole is already present because

the process of black hole formation is outside the regime of hydrodynamics [56].

Simply replacing the stochastic model of this thesis with hydrodynamics is not what we

plan to do. For one thing, it is hoped that the initial conditions of Figure 21 correspond to

black holes that have not formed yet. For hydrodynamics to apply, we must wait for the

inhomogeneities to be smoothed out. Therefore, we should only expect agreement between

hydrodynamics and a suitable extension of our model if we linearize both of them. Another

reason to extend our model comes from the importance of the density of states. When we

only had energy being transferred, this function allowed us to read off diffusing or clustering

behaviour. It is plausible that something similar can be done when we include momentum.

B. Restricting the density of states

If momentum is viewed as a quantity exchanged between nearest neighbour sites, the rate

for each transition naturally depends on a momentum restricted density of states ρ(E,P).

While expressions for ρ(E,P) appear in some models of electron structure [86], the restricted

density of states for a field theory is a barely studied quantity. Here, we attempt to rectify

this by deriving some properties of the restricted density of states for simple field theories.

A strongly coupled SYM expression analogous to (46) is most likely beyond our reach.
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1. Some conformal field theory

Some of the most interesting techniques for counting states are applicable to two-

dimensional CFTs. Consider a Minkowskian theory on S1 × R where the circle has radius

1 by convention. At thermal equilibrium, this can be thought of as a Euclidean theory on

S1×S1 since temperature and time are related by a Wick rotation. The radius of the second

circle must be β. If we rescale each S1 by the same factor, one such rescaling gives us another

Euclidean theory on a circle of radius 1 as shown in Figure 30. Conformal invariance then

β

V

V

V2 / β

FIG. 30: These two theories live on a circle of volume V but their temperatures are

different. They are related through multiplication by V
β

which is a conformal

transformation.

tells us that inverse temperature β and inverse temperature V 2

β
are completely equivalent

[87]. In terms of the modular parameter we defined for (7), τ = i β
2π

becomes i4π2/β
2π

= − 1
τ
.

For a τ that is not imaginary, the factor we trace over to compute the generalized partition

function is e−2πτ2H+2πiτ1P . Clearly, this does not change if we increase the real part of τ by

1. Symmetries of the generalized partition function can therefore be written as

τ 7→ τ + 1

τ 7→ −1

τ
. (140)

These two transformations generate the modular group which is the discrete but infinite

group SL(2,Z). The utility of modular invariance for studying thermodynamics was first

noticed by Cardy in 1986 [88]. Our previous expressions for the partition function of a

free theory do not posess modular invariance. This is because they are only asymptotic

expressions for the high temperature limit of Z. Low temperature information is lost when

we convert sums to integrals. It is perhaps for this reason that most sources prefer to write
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infinite products or special functions when simple expressions like (3) and (7) are all that

are needed.

For an infinite collection of oscillators with frequencies 1, 2, 3, . . . , the energy of an arbi-

trary state |N1, N2, N3, . . . 〉 is N1 + 2N2 + 3N3 + . . . . The degeneracy of energy n is simply

the number of ways to make n by picking a certain number of ones, a certain number of

twos, a certain number of threes and so on. This well-studied object p(n) is usually called

“the partition function” in number theory. We will call this microcanonical quantity “the

partition sum” to distinguish it from the canonical partition function we have been using

so far. The first asymptotic p(n) ∼ 1
4
√

3n
eπ
√

2
3
n due to Hardy and Ramanujan was based on

transformation properties of the generating function

F (q) =
∞∑
n=1

p(n)qn

=
[
1 + q + q2 + . . .

] [
1 + q2 + q4 + . . .

]
. . .

=
∞∏
n=1

(1− qn)−1 . (141)

If we take q = e2πiτ (and τ = i β
2π

as before), (141) becomes a sum of Boltzmann factors. It

is not quite the partition function of our oscillator family because we have not yet included

the Casimir effect. Accounting for zero point energies, each term in the product (141) picks

up a factor of q
n
2 giving us

Z1(τ) =
∞∏
n=1

q
n
2 (1− qn)−1

= q−
1
24

∞∏
n=1

(1− qn)−1

= η−1(τ) . (142)

We have analytically continued and written this partition function in terms of the Dedekind

eta function

η(τ) = e
πiτ
12

∞∏
n=1

(
1− e2πinτ

)
. (143)

Referring to the eta function, Rademacher gave a convergent series for p(n)

p(n) =
1√
2π

∞∑
k=1

Ak(n)
√
k

d

dn

sinh
(
π
k

√
2
3

(
n− 1

24

))√
n− 1

24

 (144)

Ak(n) =
∑

m∈(Z/kZ)∗

eπi(s(m,k)− 2nm
k )
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where the coefficients are written in terms of the Dedekind sum

s(m, k) =
k−1∑
l=1

l

k

(
ml

k
−
⌊
ml

k

⌋
− 1

2

)
.

Just as we treated ρ(E) as the inverse Laplace transform of Z(β), the partition sum is an

integral transform of its generating function.

p(n) =
1

2πi

∫
γ

F (q)

qn+1
dq

Instead of a vertical line, the contour γ that leads to (144) is a beautiful shape built up from

fractals in the complex plane. A very readable thesis on this derivation is [89].

The main fact about F (q) used in the proof is that it is an imaginary exponential times

a function which plays nicely with the modular group — as it would be even if our theory

were not free. Under the modular generators (140), the Dedekind eta function transforms

in the following way:

η(τ + 1) = e
πi
12η(τ)

η

(
−1

τ

)
=
√
−iτη(τ) . (145)

The first of these equalities is trivial. The second is not but there is a clever proof containing

no more than a page of algebra [90]. A function with transformation properties similar to

(145) is called a modular form. More precisely, a holomorphic function f in the upper half

plane is a modular form of weight w if∣∣∣∣f (−1

τ

)∣∣∣∣ = τw |f(τ)| .

According to this definition, η is a modular form of weight 1
2
. The Rademacher formula can

be rederived for (multiples of) other modular forms. The result is [91, 92]

pw(n) = 2π
∑

m− c
24
<0

(
n− c

24∣∣m− c
24

∣∣
)w−1

2

pw(m)

∞∑
k=1

1

k
Kl
(
n− c

24
,m− c

24
; k
)
I1−w

(
4π

k

√∣∣∣m− c

24

∣∣∣ (n− c

24

))
(146)

where the Kloosterman sum is defined by

Kl(n,m; k) =
∑

d∈(Z/kZ)∗

e
2πi
k (dn+d−1m) .
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For our purposes, we will choose a weight w and use k = m = 0. Uniqueness of the vacuum

gives pw(0) = 1 and the central charge is 2 when we have left movers and right movers. This

formula can be understood as the origin of the Bessel function in (6).

In order to use the partition sum and its asymptotics to study ρ(E,P ), there are some

changes that must be made to our theory of positively indexed oscillators. To start, we should

FIG. 31: The theory we have discussed so far resembles a harmonic potential where

arbitrarily many non-interacting bosons can be piled into each level.

introduce negatively indexed oscillators to make it more like a field theory in momentum

space. An excitation of any oscillator increases the energy. Whether it increases or decreases

momentum depends on whether the frequency is positive or negative. This means that in

the contribution of the newly introduced oscillators, τ2 has the same sign as in Z1(τ) and

τ1 has the opposite. Including a sum of e−2πinτ∗ Boltzmann factors along with our sum of

e2πinτ Boltzmann factors suggests that the partition function for the doubly infinite family

of oscillators is |η(τ)|−2. This is almost correct, but we need to remember that the Casimir

contribution doubles instead of vanishes when we add more oscillators. Fixing this, the

appropriate partition function is given by

Z2(τ) = η−1(τ)η−1(−τ ∗)∗ . (147)

This is still not modular invariant because we have not yet included the oscillator with zero

frequency. The zero mode has a continuous spectrum which is quadratic in the free variable
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ξ [87]. This can be seen e.g. in the scalar field mode expansion that was discussed in the

context of the string action (8). The most exact expression for the partition function of

scalar field theory is therefore

Z3(τ) = Z2(τ)

∫ ∞
−∞

e−π=τξ
2 dξ

2π

=
1

2π
√
=τ

η−1(τ)η−1(−τ ∗)∗ . (148)

To summarize these results, the partition function Z1 is a modular form of weight −1
2
.

By (146), its density of states is asymptotic to the partition sum; p− 1
2
(n) ∼ 1

4
√

3n
eπ
√

2
3
n.

Doubling the number of oscillators, we made the partition function Z2 which is a modular

form of weight −1. Its density of states has the behaviour p−1(n) ∼ 3
1
4

12n
5
4
e2π
√

1
3
n. The

partition function Z3, since it describes a CFT, is a modular form of weight 0. If we take

the density of states p0(n) ∼ 3
1
4

√
12n

3
4
e2π
√

1
3
n and substitute n = V E

2π
for the conformal weight,

our expression agrees with (4) which gave ρ(E) for a free CFT from an entirely different

setup.

2. Convoluted functions

Evidently, the Casimir term and the zero mode do not affect log pw(n) to leading order.

It is therefore valid to use F (q)2 instead of Z3(τ) as the generating function. With this

approximation, the convolution formula gives a very clear picture of how the density of

states is comprised.

p0(n) ≈ 1

n!

dn

dqn
F (q)2

=
n∑
k=0

p(k)p(n− k)

The first term p(0)p(n) has n right movers and 0 left movers and corresponds to energy

n and momentum n. The last term p(n)p(0) has 0 right movers and n left movers and

corresponds to energy n and momentum −n. The middle term p
(
n
2

)2
has a left mover for

every right mover and corresponds to energy n and momentum 0. This tells us that in a

1 + 1-dimensional possibly interacting CFT,

ρ(E,P ) =
1

2
p

(
V

4π
(E − P )

)
p

(
V

4π
(E + P )

)
(149)
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is a good approximation to the momentum restricted density of states. This only becomes

difficult to evaluate when |P | 6= E are of the same order.

Essentially we derived (149) by starting with a function whose asymptotic behaviour is

log p(n) ∼ π
√

2
3
n. The convolution of two of them yields a function that follows log p0(n) ∼

π
√

4
3
n. In other words, convolution doubles the central charge. At least for free theories,

this phenomenon can be readily seen in higher dimensions. The crudest form of (4) is

log ρ(E) ∼
(

(d+ 1)d+1

dd
AV Ed

) 1
d+1

.

It will be helpful to write this density of states explicitly as ρ(E;A) from now on. For a

bosonic theory, we had A proportional to s and for a fermionic theory, we had A proportional

to s∗. Writing the partition function
∏

p Z(p)sZ∗(p)s
∗
, it becomes clear that ρ(·;A) is ρ

(
·; A

2

)
convolved with itself. Performing substitutions in the resulting integral,

ρ(E;A) =

∫ E

0

ρ

(
ξ;
A

2

)
ρ

(
E − ξ; A

2

)
dξ

=
1

2

∫ E

−E
ρ

(
E − P

2
;
A

2

)
ρ

(
E + P

2
;
A

2

)
dP

=

∫ E

0

ρ

(
E − P

2
;
A

2

)
ρ

(
E + P

2
;
A

2

)
dP

=

∫ ∞
0

ρ

(
E − P

2
;
A

2

)
ρ

(
E + P

2
;
A

2

)
dP

=
1

dωd

∫
Rd
ρ

(
E − |P|

2
;
A

2

)
ρ

(
E + |P|

2
;
A

2

)
dP . (150)

In the second last step we have used the fact that densities of states are zero for negative

arguments. Part of the definition of the restricted density of states is

ρ(E;A) =

∫
Rd
ρ(E,P;A)dP . (151)

Comparing (150) to (151), a plausible formula for the restricted density of states in a free

CFT is

log ρ(E,P) ∼
(

(d+ 1)d+1

2(2d)d
AV (E − |P|)d

) 1
d+1

+

(
(d+ 1)d+1

2(2d)d
AV (E + |P|)d

) 1
d+1

. (152)

In order to use the convolution formula, we factored the partition function in a way that

is not always valid. This means we again have results for a free CFT in arbitrary dimension

and an arbitrary CFT in two dimensions. It is possible that further results could be obtained
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using an entropy proposed by Erik Verlinde in 2000 [93, 94]. This Cardy-Verlinde formula

suggests that higher dimensional CFTs are thermodynamically more similar to their two-

dimensional cousins than previously thought.

VII. ENTROPIC DYNAMICS OF MOMENTUM

Retracing our steps, there are nonlinear PDEs associated with changes in the momentum

distribution on a lattice. Each lattice direction, which we will call a large direction, needs

to have one evolution equation associated with it. Additionally, each site is allowed to have

compact or small directions which do not show up in the PDEs. Therefore the ρ(E,P) we

should use comes from a more restricted function ρ(E,P,P∗) for the whole field theory and

has P∗ for the small directions integrated out. Most of the simulations for our previous

model had one large direction. Because we used the density of states (46) for SYM on S3, it

is tempting to say that these simulations had three small directions. This is misleading as

Figure 32 shows. If each site is viewed as a miniature field theory whose spatial directions

(a) Sharing no directions

(b) Sharing one direction

FIG. 32: If one uses a density of states for two spatial dimensions, both of these situations

are compatible with the lattice being a line. One has an overall dimensionality of 2 + 1, the

other 3 + 1. The task of introducing momentum to our model forces us to address this

ambiguity.

are all orthogonal to the lattice, there is nothing left after integrating out P∗. The result is

simply an unrestricted density of states ρ(E) precluding our attempts to extend the model.

What we really need are sites that include the directions of the lattice in addition to their

compact directions. Therefore what we considered previously was not S3 with radius r but
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S2 × [0, r]. This is a background with only two small directions because the non-periodic

[0, r] matches up with the lattice. By arguments in [7], the density of states for such a theory

should be similar to (46). Including time, this theory with one large direction and two small

ones lives on R2 × S2. The Witten model, which is known to host plasma balls, has the

background R4×S1 suggesting that its lattice sites look like S1× [0, r]3. The equations that

follow will have d referring to the number of large spatial dimensions only.

A. Proceeding by analogy

In order to derive our PDE for the energy

∂E

∂t
= ∂i

(
C(E)ρ2(E)∂i

d log ρ(E)

dE

)
, (153)

we took the continuum limit of the equation

∂nc
∂t

=
∑
〈b,c〉

∑
k 6=0

kW(nc,nb)→(nc+k,nb−k) . (154)

The main steps involved were assuming that k was some small amount of energy ±ε and

writing nc as E(x) where site b was “one lattice vector” away from site c. Then (154) became

∂E(x)

∂t
= ε

∑
e∈{±e1,...,±ed}

[
W(E(x),E(x+ae))→(E(x)+ε,E(x+ae)−ε) −W(E(x),E(x+ae))→(E(x)−ε,E(x+ae)+ε)

]
(155)

and we took ε and a to zero. The sum runs over positive and negative versions of the

standard basis vectors so that in a cubic lattice, all 2d nearest neighbours are accessed.

1. Allowed transitions and rates

In (155) above, ∂E(x)
∂t

was proportional to ε, the smallest amount of energy allowed to

move in one timestep. Therefore, we should presumably add an equation for momentum

where ∂P(x)
∂t

is proportional to some q, the smallest momentum vector that moves in one

timestep. This can be written as qe, the length times some unit vector, where q → 0 just

like ε and a.

However, q and ε are not independent. A CFT in d = 1 for instance has energy and
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momentum operators that can be written in terms of left movers and right movers:

E = NR +NL −
c

12

P = NR −NL .

The only way to add to E is to excite either NR or NL with ε units of energy and this

necessarily adds ε to or subtracts ε from P . In this case we must have q = ε. We will make

the assumption that the other theories we wish to model also have the energy transferred

equal to the magnitude of the momentum transferred.

Now that we know E increases or decreases by ε whenever P increases or decreases by

εe, an allowed transition takes the form

(E(x),P(x), E(x + ae),P(x + ae))→ (E(x)± ε,P(x)− εe′, E(x + ae)∓ ε,P(x + ae) + εe′)

where e is a unit vector indicating the two sites involved and e′ is a priori some other unit

vector. However, it does not make sense for momentum in the vertical direction to move

between sites that are horizontally displaced and it does not make sense for momentum

pointing in the up direction to move down. Therefore we require that e′ = e. This is

where we see that the vector of large momentum components P lives in the same number

of dimensions as the lattice vector x.

When focusing on energy distributions, the form of the transition rates in (155) followed

from thermodynamic arguments as

W(E(x),E(x+ae))→(E(x)+ε,E(x+ae)−ε) = C

(
E(x) + E(x + ae)

2

)
ρ(E(x) + ε)ρ(E(x + ae)− ε)

(156)

with the number of states having energy E given by ρ(E). The analogous transition rate

involving momentum should depend on ρ(E,P) in the same way. We are led to:

W(E(x),P(x),E(x+ae),P(x+ae))→(E(x)+ε,P(x)−εe′,E(x+ae)−ε,P(x+ae)+εe′) =

δe,e′C

(
E(x) + E(x + ae)

2
,
P(x) + P(x + ae)

2

)
ρ(E(x) + ε,P(x)− εe′)ρ(E(x + ae)− ε,P(x + ae) + εe′) . (157)
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2. A tensor identity

Consider what happens when we differentiate E(x + ae) twice with respect to a.

∂

∂a
E(x + ae) = ei∂iE(x + ae)

∂2

∂a2
E(x + ae) = eiej∂i∂jE(x + ae) (158)

Note that ei and ej without the boldface are not the ith and jth standard basis vectors, they

are the ith and jth components of the general unit vector e. All of the terms that we must

differentiate with respect to a occur inside a sum over e so we must know how to deal with

sums of components of unit vectors. When we sum eiej, there is only one standard basis

vector for which ei is nonzero and only one standard basis vector for which ej is nonzero.

They have to be the same one for the resulting sum to be nonzero, so it is clear that:∑
e∈{±e1,...,±ed}

eiej = 2δij .

We used this fact when deriving the PDE for our first model. For reasons that are not

initially clear, we will show that one can get the same answer up to a constant by replacing

the sum over lattice vectors with a surface integral over a sphere.

Claim 2. ∫
Sd−1

eiejdSe = ωdδij

where ωd is the volume of the unit ball in Rd.

Proof. If i = j, we simply apply the divergence theorem to the identity vector field. Let

v(e) = e, defined on the unit ball Bd. Then,∫
Bd
∇ · vde =

∫
∂Bd

v · ndSe

for this vector field reads

d

∫
Bd

de =

∫
Sd−1

(e1)2 + · · ·+ (ed)
2dSe

because if the unit vector e extends from the origin to a point on Sd−1, the unit normal to

the surface at this point is just e. By symmetry, the right hand side is d copies of what we

are trying to compute, so this cancels the d on the left hand side yielding:

ωd =

∫
Sd−1

(ei)
2dSe .

107



To see that this integral vanishes when i and j are different, parametrize the unit sphere as

x1 = cos θ1

x2 = sin θ1 cos θ2

. . .

xd−1 = sin θ1 . . . sin θd−2 cos θd−1

xd = sin θ1 . . . sin θd−2 sin θd−1

and without loss of generality, choose ei = xd and ej = xd−1. The desired integral is then∫ 2π

0

∫ π

0

. . .

∫ π

0

[sin2 θ1 . . . sin
2 θd−2 sin θd−1 cos θd−1] sind−2 θ1 sind−3 θ2 . . . sin θd−2dθ1 . . . dθd−2dθd−1

where the part in brackets is eiej. Since the area element only goes up to θd−2, the part

involving θd−1 is just a sine and a cosine which we know integrates to zero.

Unlike in our first model, equations involving momenta will have several places in which

there are four components of e. This will make it important that we integrate rather than

sum. A sum of four components will give zero unless the indices are all the same.

∑
e∈{±e1,...,±ed}

eiejekel =

2 i = j = k = l

0 otherwise

The continuous version, on the other hand, is a much nicer object.

Claim 3. ∫
Sd−1

eiejekeldSe =
ωd
d+ 2

(δijδkl + δikδjl + δilδjk)

where ωd is the volume of the unit ball in Rd.

Proof. We will first prove the special case when i = j = k = l. Define a vector field

v : Bd → Rd which cubes every component of its argument:

vi(e) = (ei)
3 .
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Using the divergence theorem on this, we get:∫
Bd
∇ · vde =

∫
∂Bd

v · ndSe

3

∫
Bd

(e1)2 + . . . (ed)
2de =

∫
Sd−1

(e1)4 + · · ·+ (ed)
4dSe

3dωd

∫ 1

0

rd+1dr = d

∫
Sd−1

(ei)
4dSe

3ωd
d+ 2

=

∫
Sd−1

(ei)
4dSe .

We will now apply this to the case when i and k are different.∑
k 6=i

∫
Sd−1

(ei)
2(ek)

2dSe =
d∑

k=1

∫
Sd−1

(ei)
2(ek)

2dSe −
∫
Sd−1

(ei)
4dSe

=

∫
Sd−1

(ei)
2dSe −

∫
Sd−1

(ei)
4dSe

= ωd −
3ωd
d+ 2

= ωd
d− 1

d+ 2
(159)

We summed k over all but one of the d choices, so by symmetry, this should be d− 1 times

the actual value. This shows that:∫
Sd−1

eiej(ek)
2dSe =

ωd
d+ 2

δij .

We have computed the integral when k and l are the same. Similarly, if k and i were the

same, the result would be proportional to δjl and if k and j were the same, the result would

be proportional to δil. This covers the three ways to have pairs of equal indices. It remains

to be seen that the expression vanishes when i, j, k and l are all different. As before, we

can show this using explicit co-ordinates.

ei = sin θ1 . . . sin θd−2 sin θd−1

ej = sin θ1 . . . sin θd−2 cos θd−1

ek = sin θ1 . . . sin θd−3 cos θd−2

el = sin θ1 . . . sin θd−4 cos θd−3

Again, ei and ej contribute an odd function of θd−1 while the surface measure does not

depend on θd−1. The other components cannot change this because ek and el are both

distinct from ei and ej.
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3. Setting up the equations

In (155), ∂E(x)
∂t

was schematically given by “W for a transition that adds ε to site x”

minus “W for a transition that subtracts ε from site x”, summed over e and multiplied by

ε. We will write out this type of expression except we will integrate instead of sum.

∂E(x)

∂t
= ε

∫
Sd−1

W(E(x),P(x),E(x+ae),P(x+ae))→(E(x)+ε,P(x)−εe,E(x+ae)−ε,P(x+ae)+εe)

− W(E(x),P(x),E(x+ae),P(x+ae))→(E(x)−ε,P(x)−εe,E(x+ae)+ε,P(x+ae)+εe)dSe (160)

Note that P(x) always receives a −εe contribution because we are adopting a convention

where x + ae is the “other site”. If our convention had x − ae as the other site, P(x)

would receive a +εe contribution. The fact that there are two ways to raise the energy

E(x) 7→ E(x)+ ε (adding a left mover from the right site and adding a right mover from the

left site) is accounted for by the integral that causes e to change direction. Writing down

the momentum equation and being careful about the same type of thing, we get:

∂P(x)

∂t
= −ε

∫
Sd−1

e
[
W(E(x),P(x),E(x+ae),P(x+ae))→(E(x)+ε,P(x)−εe,E(x+ae)−ε,P(x+ae)+εe)

+ W(E(x),P(x),E(x+ae),P(x+ae))→(E(x)−ε,P(x)−εe,E(x+ae)+ε,P(x+ae)+εe)

]
dSe . (161)

Substituting our transition rates (157), these become:

∂E(x)

∂t
= ε

∫
Sd−1

C

(
E(x) + E(x + ae)

2
,
P(x) + P(x + ae)

2

)
[ρ(E(x) + ε,P(x)− εe)ρ(E(x + ae)− ε,P(x + ae) + εe)

−ρ(E(x)− ε,P(x)− εe)ρ(E(x + ae) + ε,P(x + ae) + εe)] dSe

∂P(x)

∂t
= −ε

∫
Sd−1

eC

(
E(x) + E(x + ae)

2
,
P(x) + P(x + ae)

2

)
[ρ(E(x) + ε,P(x)− εe)ρ(E(x + ae)− ε,P(x + ae) + εe)

+ρ(E(x)− ε,P(x)− εe)ρ(E(x + ae) + ε,P(x + ae) + εe)] dSe . (162)

Our task in the following section will be to differentiate the right hand sides with respect

to ε and a and plug in ε = 0 and a = 0. Recall that in our model for the energy, the only

non-vanishing derivative of order ≤ 4 was ∂4

∂ε2∂a2
. The momentum equation in (162) has

other low order derivatives that do not vanish. For example, set C = 1 and compute ∂4

∂ε∂a3
.

Differentiating with respect to ε once and setting ε = 0 simply removes the factor of ε in
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front. Therefore this contribution to ∂Pi
∂t

is:

−2

∫
Sd−1

eiρ(E(x),P(x))
∂3

∂a3
ρ(E(x + ae),P(x + ae))|a=0 dSe

= −2ρ(E(x),P(x))∂j∂k∂lρ(E(x),P(x))

∫
Sd−1

eiejekeldSe

=
−6ωd
d

ρ(E(x),P(x))∂i∂j∂jρ(E(x),P(x)) . (163)

This produces a rotationally covariant equation precisely because of the integral. From the

discrete sum of eiejekel that we computed previously, we can see that this would have given

us −4ρ∂i∂i∂iρ which does not transform as a vector.

B. The continuum limit

Rewriting (162) for brevity,

∂E

∂t
= X(ε, a) = εX̃(ε, a)

∂Pi
∂t

= Yi(ε, a) = εỸi(ε, a) .

We must Taylor expand X and Yi around small arguments.

1. To first non-vanishing order

It is clear that if we do not differentiate at all with respect to ε, X and Yi will vanish

at ε = 0 no matter how many times were differentiate with respect to a. It is also true

that X̃ and Ỹi will vanish identically if we do not differentiate them with respect to a. The

integrand in X̃ becomes the zero function of ε once we plug in a = 0. The integrand in Ỹi

does not but it becomes proportional to ei which is odd.

X(0, a) = 0 = X(ε, 0) and Yi(0, a) = 0 = Yi(ε, 0) so the lowest order derivative that could

possibly survive is ∂2

∂ε∂a
. Looking at X(ε, a) once more, ∂X

∂ε

∣∣
ε=0

= X̃(a, 0) which is the zero

111



function of a. Therefore, ∂2X
∂ε∂a

∣∣∣
a=0
ε=0

= 0. We will now compute this same derivative for Yi.

∂2Yi
∂ε∂a

∣∣∣∣
a=0
ε=0

=
∂Ỹi
∂a

∣∣∣∣∣
a=0
ε=0

= −2

∫
Sd−1

eiρ(E(x),P(x))
∂

∂a
C

(
E(x) + E(x + ae)

2
,
P(x) + P(x + ae)

2

)
ρ(E(x + ae),P(x + ae))|a=0 dSe

= −2ρ

(
1

2
ρ∂jC + C∂jρ

)∫
Sd−1

eiejdSe

= −ωd∂i(Cρ2)

What this shows is that to second order,

∂E

∂t
= 0

∂Pi
∂t

= −εaωd∂i(Cρ2) . (164)

This is consistent with the intuition about which way a distribution of momentum should

move. In (164), Cρ2 is a function of the energy (which is static) and the momentum mag-

nitude |P|. Consider the simplest case where we let d = 1 and Taylor expand Cρ2 as some

constant plus |P |:
∂P (x, t)

∂t
∝ −∂|P (x, t)|

∂x
.

A solution to the above equation is P (x, t) = f(x − t) where f is a non-negative function.

Because of the absolute value, another solution is P (x, t) = −f(x + t). This confirms that

the direction of motion for a disturbance is equal to the sign of the disturbance; f(x − t)

is a lump of positive (right) momentum that moves to the right, while −f(x+ t) is a lump

of negative (left) momentum that moves to the left. This behaviour appears to rectify a

shortcoming of our last model; an ejected piece of a plasma ball propagating through empty

space.

For our purposes, it is not enough to stop at the second order expansion where the energy

is constant in time. As we did with our first model, we will compute as many derivatives

of X as we need to see the energy dynamics. We argued above that we must differentiate

X at least once with respect to a and at least twice with respect to ε. In fact, we must

differentiate even more than this; ∂3X
∂ε2∂a

still vanishes. What we find by looking at the fourth
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order derivatives is:
∂E

∂t
=

1

4
ε2a2 ∂4X

∂ε2∂a2

∣∣∣∣
a=0
ε=0

. (165)

When evaluating this and similar expressions, we will surpress the steps in calculating the

ε derivatives, saving them for the appendix. Additionally, we will adopt the notation ρ+ =

ρ(E(x + ae),P(x + ae)) and C+ = C
(
E(x)+E(x+ae)

2
, P(x)+P(x+ae)

2

)
and recall that:

∂ρ+

∂a
= ej∂jρ+

∂C+

∂a
=

1

2
ej∂jC+ . (166)

If we apply this to (165), our steps are:

∂4X

∂ε2∂a2

∣∣∣∣
a=0
ε=0

= 2
∂3X̃

∂ε∂a2

∣∣∣∣∣
a=0
ε=0

= 4

∫
Sd−1

∂2

∂a2

[
C+

(
ρ+

∂ρ

∂E
− ρ∂ρ+

∂E

)]∣∣∣∣
a=0

dSe

= 4

∫
Sd−1

ei
∂

∂a

[
1

2
∂iC+

(
ρ+

∂ρ

∂E
− ρ∂ρ+

∂E

)
+ C+

(
∂iρ+

∂ρ

∂E
− ρ∂i

∂ρ+

∂E

)]∣∣∣∣
a=0

dSe

= 4

∫
Sd−1

eiej

[
C

(
∂i∂jρ

∂ρ

∂E
− ρ∂i∂j

∂ρ

∂E

)
− ∂iC

(
ρ∂j

∂ρ

∂E
− ∂jρ

∂ρ

∂E

)]
dSe

= 4ωd

[
C

(
∂i∂iρ

∂ρ

∂E
− ρ∂i∂i

∂ρ

∂E

)
− ∂iC

(
ρ∂i

∂ρ

∂E
− ∂iρ

∂ρ

∂E

)]
= −4ωd∂i

(
Cρ2∂i

d log ρ

dE

)
.

This shows that to first non-vanishing order,

∂E

∂t
= −ε2a2ωd∂i

(
Cρ2∂i

∂ log ρ

∂E

)
. (167)

Notice that when we only considered the energy, we dropped factors of ε and a from (153).

We must keep factors of ε and a in the PDEs for energy and momentum because they

appear with different exponents. The dominant contribution to ∂P
∂t

includes εa, while in

the dominant contribution to ∂E
∂t

, it is (εa)2. The ratio between these factors is a physical

quantity because it tells us how long the diffusion time scale in (167) is relative to the

transport time scale in (164).
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2. To first consistent order

We now have non-trivial differential equations for both energy and momentum. However,

the former is correct to fourth order while the latter is only correct to second order. To be

consistent, we will find further terms in the momentum PDE. The terms are

∂Pi
∂t

= εa
∂2Yi
∂ε∂a

∣∣∣∣
a=0
ε=0

+
1

6
ε3a

∂4Yi
∂ε3∂a

∣∣∣∣
a=0
ε=0

+
1

4
ε2a2 ∂4Yi

∂ε2∂a2

∣∣∣∣
a=0
ε=0

+
1

6
εa3 ∂4Yi

∂ε∂a3

∣∣∣∣
a=0
ε=0

, (168)

which we will calculate one by one.

∂4Yi
∂ε3∂a

∣∣∣∣
a=0
ε=0

= 3
∂3Ỹi
∂ε2∂a

∣∣∣∣∣
a=0
ε=0

= 6

∫
Sd−1

ei
∂

∂a

[
C+

(
∂ρ

∂E
− ej

∂ρ

∂Pj

)(
∂ρ+

∂E
− ek

∂ρ+

∂Pk

)
+C+

(
∂ρ

∂E
+ ej

∂ρ

∂Pj

)(
∂ρ+

∂E
+ ek

∂ρ+

∂Pk

)
− C+ρ+

(
∂2ρ

∂E2
+ ejek

∂2ρ

∂Pj∂Pk

)
−C+ρ

(
∂2ρ+

∂E2
+ ejek

∂2ρ+

∂Pj∂Pk

)]∣∣∣∣
a=0

dSe

= 6

∫
Sd−1

eiel

[
2
∂ρ

∂E

(
1

2
∂lC

∂ρ

∂E
+ C∂l

∂ρ

∂E

)
+ 2

∂ρ

∂Pj
ejek

(
1

2
∂lC

∂ρ

∂Pk
+ C∂l

∂ρ

∂Pk

)
−
(

1

2
∂lCρ+ C∂lρ

)(
∂2ρ

∂E2
+ ejek

∂2ρ

∂Pj∂Pk

)
−ρ
(

1

2
∂lC

∂2ρ

∂E2
+

1

2
∂Cejek

∂2ρ

∂Pj∂Pk
+ C∂l

∂2ρ

∂E2
+ Cejek∂l

∂2ρ

∂Pj∂Pk

)]
dSe

=
6ωd
d+ 2

[
∂lC

(
∂ρ

∂E

)2

δjk + ∂lC
∂ρ

∂Pj

∂ρ

∂Pk
+ C∂l

(
∂ρ

∂E

)2

δjk + C∂l

(
∂ρ

∂Pj

∂ρ

∂Pk

)
−ρ∂lC

∂2ρ

∂E2
δjk − ρ∂lC

∂2ρ

∂Pj∂Pk
− C∂lρ

∂2ρ

∂E2
δjk − C∂lρ

∂2ρ

∂Pj∂Pk

−Cρ∂l
∂2ρ

∂E2
δjk − Cρ∂l

∂2ρ

∂Pj∂Pk

]
(δijδkl + δikδjl + δilδjk)

= − 6ωd
d+ 2

∂l

[
Cρ2

(
∂2 log ρ

∂E2
δjk +

∂2 log ρ

∂Pj∂Pk

)]
(δijδkl + δikδjl + δilδjk)
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In the next one, the steps are very similar.

∂4Yi
∂ε2∂a2

∣∣∣∣
a=0
ε=0

= 2
∂3Ỹi
∂ε∂a2

∣∣∣∣∣
a=0
ε=0

= 4

∫
Sd−1

eiej
∂2

∂a2

[
C+ρ+

∂ρ

∂Pj
− C+ρ

∂ρ+

∂Pj

]∣∣∣∣
a=0

dSe

= 4

∫
Sd−1

eiejek
∂

∂a

[(
1

2
∂kC+ρ+ + C+∂kρ+

)
∂ρ

∂Pj
−
(

1

2
∂kC+

∂ρ+

∂Pj
+ C+∂k

∂ρ+

∂Pj

)
ρ

]∣∣∣∣
a=0

dSe

= 4

∫
Sd−1

eiejekel

[
(∂kC∂lρ+ C∂k∂lρ)

∂ρ

∂Pj
−
(
∂kC∂l

∂ρ

∂Pj
+ C∂k∂l

∂ρ

∂Pj

)
ρ

]
dSe

=
4ωd
d+ 2

(
∂kC∂lρ

∂ρ

∂Pj
+ C∂k∂lρ

∂ρ

∂Pj
− ∂kC∂l

∂ρ

∂Pj
ρ− C∂k∂l

∂ρ

∂Pj
ρ

)
(δijδkl + δikδjl + δilδjk)

= − 4ωd
d+ 2

∂k

(
Cρ2∂l

∂ log ρ

∂Pj

)
(δijδkl + δikδjl + δilδjk)

The final expression for ∂4Yi
∂ε3∂a

∣∣∣
a=0
ε=0

involves no more than one derivative of C becaues there is

only one derivative with respect to a. Since ∂4Yi
∂ε2∂a2

∣∣∣
a=0
ε=0

has two a derivatives, there is a chance

that the expression will involve two derivatives of C. However, we know from above that

the double derivatives of C cancel out. This will not happen when we compute ∂4Yi
∂ε∂a3

∣∣∣
a=0
ε=0

.

In this case all three derivatives of C will survive and we will have to extend (166) so that

we know how to deal with up to three derivatives of C+. A simple C(E(x)) can be used to

illustrate the problem.

∂C

∂x
=

∂C

∂E

∂E

∂x

∂2C

∂x2
=

∂2C

∂E2

(
∂E

∂x

)2

+
∂C

∂E

∂2E

∂x2

∂3C

∂x3
=

∂3C

∂E3

(
∂E

∂x

)3

+ 3
∂2C

∂E2

∂E

∂x

∂2E

∂x2
+
∂C

∂E

∂3E

∂x3
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These expansions are straightforward. However, when we consider C+, we do not get the

benefit of being able to write multiple derivatives in a compact form.

∂C+

∂a

∣∣∣∣
a=0

=
1

2

∂C

∂E

∂E

∂x

=
1

2

∂C

∂x
∂2C+

∂a2

∣∣∣∣
a=0

=
∂

∂a

(
1

2

∂C+

∂E

∂E+

∂x

)∣∣∣∣
a=0

=
1

4

∂2C

∂E2

(
∂E

∂x

)2

+
1

2

∂C

∂E

∂2E

∂x2

6= 1

4

∂2C

∂x2

∂3C+

∂a3

∣∣∣∣
a=0

=
∂

∂a

[
1

4

∂2C+

∂E2

(
∂E+

∂x

)2

+
1

2

∂C+

∂E

∂2E+

∂x2

]∣∣∣∣∣
a=0

=
1

8

∂3C

∂E3

(
∂E

∂x

)3

+
3

4

∂2C

∂E2

∂E

∂x

∂2E

∂x2
+

1

2

∂C

∂E

∂3E

∂x3

6= 1

8

∂3C

∂x3
(169)

We must be careful to use these relations in the last part of the calculation we are carrying

out.

∂4Yi
∂ε∂a3

∣∣∣∣
a=0
ε=0

=
∂3Ỹi
∂a3

∣∣∣∣∣
a=0

= −2

∫
Sd−1

eiρ
∂

∂a3
(C+ρ+)

∣∣∣∣
a=0

dSe

= − 2ωd
d+ 2

[
C∂j∂k∂lρ+

3

2
∂jC∂k∂lρ+ 3∂jρ

(
1

4

∂2C

∂E2
∂kE∂lE +

1

2

∂2C

∂E∂Pm
∂kPm∂lE

+
1

4

∂2C

∂Pm∂Pn
∂kPm∂lPn +

1

2

∂C

∂E
∂k∂lE +

1

2

∂C

∂Pm
∂k∂lPm

)
+ ρ

(
1

8

∂3C

∂E3
∂jE∂kE∂lE

+
3

8

∂3C

∂E2∂Pm
∂jPm∂kE∂lE +

3

8

∂3C

∂E∂Pm∂Pn
∂jPm∂kPn∂lE +

1

8

∂3C

∂Pm∂Pn∂Po
∂jPm∂kPn∂lPo

+
3

4

∂2C

∂E2
∂j∂kE∂lE +

3

4

∂2C

∂Pm∂E
∂jPm∂k∂lE +

3

4

∂2C

∂E∂Pm
∂j∂kPm∂lE

+
3

4

∂2C

∂Pm∂Pn
∂j∂kPm∂lPn +

1

2

∂C

∂E
∂j∂k∂lE +

1

2

∂C

∂Pm
∂j∂k∂lPm

)]
(δijδkl + δikδjl + δilδjk)

We saw in (163) that the fourth order term in ∂Pi
∂t

involving εa3 is quite simple when C = 1.

The above shows that it is considerably more messy for a general C. Putting together all of
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the derivatives that have been computed, the end result is:

∂E

∂t
= −ε2a2ωd∂i

(
Cρ2∂i

∂ log ρ

∂E

)
∂Pi
∂t

= −εaωd∂i(Cρ2)− ε3a ωd
d+ 2

∂l

[
Cρ2

(
∂2 log ρ

∂E2
δjk +

∂2 log ρ

∂Pj∂Pk

)]
(δijδkl + δikδjl + δilδjk)

−ε2a2 ωd
d+ 2

∂k

(
Cρ2∂l

∂ log ρ

∂Pj

)
(δijδkl + δikδjl + δilδjk)

−εa3 ωd
3(d+ 2)

[
C∂j∂k∂lρ+

3

2
∂jC∂k∂lρ+ 3∂jρ

(
1

4

∂2C

∂E2
∂kE∂lE +

1

2

∂2C

∂E∂Pm
∂kPm∂lE

+
1

4

∂2C

∂Pm∂Pn
∂kPm∂lPn +

1

2

∂C

∂E
∂k∂lE +

1

2

∂C

∂Pm
∂k∂lPm

)
+ ρ

(
1

8

∂3C

∂E3
∂jE∂kE∂lE

+
3

8

∂3C

∂E2∂Pm
∂jPm∂kE∂lE +

3

8

∂3C

∂E∂Pm∂Pn
∂jPm∂kPn∂lE +

1

8

∂3C

∂Pm∂Pn∂Po
∂jPm∂kPn∂lPo

+
3

4

∂2C

∂E2
∂j∂kE∂lE +

3

4

∂2C

∂Pm∂E
∂jPm∂k∂lE +

3

4

∂2C

∂E∂Pm
∂j∂kPm∂lE +

3

4

∂2C

∂Pm∂Pn
∂j∂kPm∂lPn

+
1

2

∂C

∂E
∂j∂k∂lE +

1

2

∂C

∂Pm
∂j∂k∂lPm

)]
(δijδkl + δikδjl + δilδjk) . (170)

These equations take up a lot of space and that is all because of the last term.

3. Static configurations

For a general density of states ρ(E,P) and function C(E,P), (170) is only static when

energy and momentum are both uniform. If only one of them is, derivatives of ρ and C will

not vanish and the equations will introduce non-uniformities. If the momentum is initially

zero everywhere, we can compare the energy equation just derived with the one from our

first model:

∂E

∂t
= −ε2a2ωd∂i

(
C(E, 0)ρ2(E, 0)∂i

∂ log ρ(E, 0)

∂E

)
∂E

∂t
= −ε2a2ωd∂i

(
C(E)ρ2(E)∂i

d log ρ(E)

dE

)
.

The unrestricted density of states ρ(E) should be qualitatively similar to the zero momentum

density of states ρ(E, 0). Therefore these models predict similar diffusive behaviour at early

times. However, this diffusion generates momentum which can cause very different behaviour

to occur at late times once the non-uniformities become significant. For example, a Hagedorn

density of states with P(x, 0) = 0 requires ∂E
∂t

to be zero (indicating slow diffusion) at t = 0
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but not necessarily later times. This supports the idea that our first model overestimates

the amount of time taken for a cluster of energy to diffuse.

Before, we saw that the dynamics were frozen for any energy distribution when ρ(E) was

a Hagedorn density of states. If such a density of states were to exist for this system of

PDEs, log ρ(E,P) would have to be linear in both E and P. Of the five terms in (170), this

form causes the three involving logarithms to vanish. What about the term in momentum

proportional to εa? This will not vanish unless we choose a special C function as well. The

one to choose is C ∝ ρ−2. It is not immediately obvious, but this choice causes the one

remaining term (the one proportional to εa3) to vanish as well. This is because

∂4Yi
∂ε∂a3

∣∣∣∣
a=0
ε=0

= −2

∫
Sd−1

ei
∂

∂a3
(C+ρ+ρ)

∣∣∣∣
a=0

dSe

= −2

∫
Sd−1

ei
∂

∂a3

(
e
−2

(
aE+bjPj

2
+
βHE++βHvjPj+

2

)
eβHE++βHvjPj+eβHE+βHvjPj

)∣∣∣∣
a=0

= −2

∫
Sd−1

ei
∂

∂a3
1

∣∣∣∣
a=0

dSe

= 0 .

Therefore C ∝ ρ−2 and C ∝ 1 appear to be natural choices once again. We will see that the

part of our equation that looks complicated for a more general C simplifies considerably if

we take the linearization.

C. Consistency check

Hydrodynamics is concerned with fluctuations of a system around some equilibrium state.

This system is often a field theory like the one being modelled by (170). An encouraging

result we have seen already is the solution at order εa in terms of left and right moving

waves. These are exact solutions to hydrodynamics for a CFT in two spacetime dimensions.

It will not be possible to compare solutions in the other cases of interest so we will focus on

matching coefficients in the linearized equations.
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1. Linearized equations

We will use (E0,P0) as our equilibrium state and insert

E(x, t) = E0 + Ẽ(x, t)

P(x, t) = P0 + P̃(x, t)

into our equations of motion leaving only one power of the perturbations (Ẽ, P̃). Working

with the term inside the derivatives in our energy equation (170), we may write

∂ log ρ(E,P)

∂E
≈ ∂ log ρ(E0,P0)

∂E
+ Ẽ

∂2 log ρ(E0,P0)

∂E2
+ P̃m

∂2 log ρ(E0,P0)

∂E∂Pm

=
∂ log ρ0

∂E
+ Ẽ

∂2 log ρ0

∂E2
+ P̃m

∂2 log ρ0

∂E∂Pm

where we have used the subscript 0 to denote evaluation at (E0,P0). Taking one derivative

kills the constant so we have:

Cρ2∂i
∂ log ρ

∂E
≈ Cρ2∂i

[
∂ log ρ0

∂E
+ Ẽ

∂2 log ρ0

∂E2
+ P̃m

∂2 log ρ0

∂E∂Pm

]
= Cρ2

(
∂2 log ρ0

∂E2
∂iẼ +

∂2 log ρ0

∂E∂Pm
∂iP̃m

)
≈ C0ρ

2
0

(
∂2 log ρ0

∂E2
∂iẼ +

∂2 log ρ0

∂E∂Pm
∂iP̃m

)
.

When we use this type of logic on the momentum equation in (170), a nice thing happens.

Only a few terms in the long εa3 contribution do not have derivatives of Ẽ and P̃ multiplied

together: the one with ∂j∂k∂lρ, the one with ∂j∂k∂lE and the one with ∂j∂k∂lPm. Carrying
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out the straightforward linearization, we see that (170) becomes:

∂Ẽ

∂t
= −ε2a2ωdC0ρ

2
0

(
∂2 log ρ0

∂E2
∂i∂iẼ +

∂2 log ρ0

∂E∂Pm
∂i∂iP̃m

)
∂P̃i
∂t

= −εaωdρ2
0

[(
∂C0

∂E
+ 2C0

∂ log ρ0

∂E

)
∂iẼ +

(
∂C0

∂Pm
+ 2C0

∂ log ρ0

∂Pm

)
∂iP̃m

]
−ε3a ωd

d+ 2

[[
C0ρ

2
0

(
∂3 log ρ0

∂E3
δjk +

∂3 log ρ0

∂E∂Pj∂Pk

)
+ρ2

0

(
∂2 log ρ0

∂E2
δjk +

∂2 log ρ0

∂Pj∂Pk

)(
∂C0

∂E
+ 2C0

∂ log ρ0

∂E

)]
∂lẼ

+

[
C0ρ

2
0

(
∂3 log ρ0

∂E2∂Pm
δjk +

∂3 log ρ0

∂Pj∂Pk∂Pm

)
+ρ2

0

(
∂2 log ρ0

∂E2
δjk +

∂2 log ρ0

∂Pj∂Pk

)(
∂C0

∂Pm
+ 2C0

∂ log ρ0

∂Pm

)]
∂lP̃m

]
(δijδkl + δikδjl + δilδjk)

−ε2a2 ωd
d+ 2

C0ρ
2
0

[
∂2 log ρ0

∂Pj∂E
∂k∂lẼ +

∂2 log ρ0

∂Pj∂Pm
∂k∂lP̃m

]
(δijδkl + δikδjl + δilδjk) (171)

−εa3 ωd
2(d+ 2)

ρ2
0

[(
∂C0

∂E
+ 2C0

∂ log ρ0

∂E

)
∂i∂j∂jẼ +

(
∂C0

∂Pm
+ 2C0

∂ log ρ0

∂Pm

)
∂i∂j∂jP̃m

]
.

These equations are still rather long. The εa3 term is now only one line but the lineariza-

tion has made the ε3a term expand. The situation can be improved if we assume that the

momentum P0 around which we linearize is not only a constant function but a constant

close to zero. This is reminiscent of a common assumption in hydrodynamics where the

fluid velocity must be much less than the speed of sound to yield propagating hydrodynamic

modes [75]. We also used this assumption previously when we linearized hydrodynamics.

This allows us to remove all coefficients above that involve an odd number of derivatives

with respect to components of P. After all, functions like C and log ρ are spherically sym-

metric in P, so their odd order derivatives vanish at the origin. Moreover, second derivatives

become proportional to δjk:

∂2 log ρ

∂Pj∂Pk
=

∂

∂Pj

(
∂ log ρ

∂|P|
Pk
|P|

)
=

∂2 log ρ

∂|P|2
PjPk
|P|2

+
∂ log ρ

∂|P|
∂

∂Pj

(
Pk
|P|

)
=

∂2 log ρ

∂|P|2
PjPk
|P|2

+
∂ log ρ

∂|P|
|P|δjk − PjPk

|P|

|P|2

=
∂ log ρ

∂|P|
δjk
|P|

+
PjPk
|P|2

(
∂2 log ρ

∂|P|2
− 1

|P|
∂ log ρ

∂|P|

)
≈ ∂ log ρ

∂|P|
δjk
|P|

.
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If we substitute this into (171), we arrive at:

∂Ẽ

∂t
= −ε2a2ωdC0ρ

2
0

∂2 log ρ0

∂E2
∂i∂iẼ

∂P̃i
∂t

= −εaωdρ2
0

(
∂C0

∂E
+ 2C0

∂ log ρ0

∂E

)
∂iẼ

−ε3aωd
[
C0ρ

2
0

(
∂3 log ρ0

∂E3
+

1

|P0|
∂2 log ρ

∂E∂|P|

)
+ ρ2

0

(
∂C0

∂E
+ 2C0

∂ log ρ0

∂E

)]
∂iẼ

−ε2a2 ωd
d+ 2

C0ρ
2
0

1

|P0|
∂ log ρ0

∂|P|

(
∂j∂jP̃i + 2∂i∂jP̃j

)
−εa3 ωd

2(d+ 2)
ρ2

0

(
∂C0

∂E
+ 2C0

∂ log ρ0

∂E

)
∂i∂j∂jẼ . (172)

2. Comparison with hydrodynamics

We are now in a position to compare (172) to hydrodynamics. Since our equations have

second and third derivatives, we should not attempt to relate them to ideal hydrodynamics.

In fact, ideal hydrodynamics has a conserved entropy and one of the fundamental assump-

tions in our model was that the entropy was driven to increase [95]. We will have to use

a stress-energy tensor that includes derivatives — a situation we referred to as dissipative

hydrodynamics.

In the Landau frame, dissipative hydrodynamics came from (131). For our purposes, it is

enough that these equations have two derivatives even though (172) has three. For a proper

comparison, we need the linearization of the hydro equations. An alternative expression for

the system (132) and (133) with no charge is

∂ε̃

∂t
+ ikP̃‖ = 0

∂P̃‖
∂t

+ ik
∂P0

∂ε
ε̃+ γsk

2P̃‖ = 0

∂P̃⊥
∂t

+ γηk
2P̃⊥ = 0 .

In this form, we have implicitly Fourier transformed the fields and decomposed the momen-

tum into a part parallel to k and a part perpendicular to k. The coefficients

γs =
d−2
d
η0 + ζ0

ε0 + P0

γη =
η0

ε0 + P0
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have been defined as in [75]. The most obvious difference we see is that the energy decouples

in (172) instead of satisfying a continuity equation. If a model with only energy is governed

by the heat equation, one hopes that this is an effective description of a continuity equation

with Fick’s law: Pi ∝ ∂iE. The linearization of (170) has shown that this is not the case;

the heat equation for energy is still an explicit part of our model.

One way around this is to consider an incompressible fluid: ∂iP̃i = 0. In hydrodynamics

this is equivalent to the approximation that the energy is constant in time. For this to be

true in the model (172), we need an energy that is already uniform so that only momentum

is flowing. The simplest comparison we can make is between the incompressible hydro

equations and a pure momentum version of our model. Since this is the ε2a2 term in (172),

the relations

γη = ε2a2 ωd
d+ 2

C0ρ
2
0

1

|P0|
∂ log ρ0

∂|P|
γs = 2γη (173)

are produced. This implies ζ = 4−d
2d
η, which is much different from the results of [78].

For a conformal fluid in any number of dimensions, tracelessness of the stress-energy tensor

demands ζ = 0. This also differs from the results of [96] which considered the hydrodynamics

of a non-conformal theory of holographic QCD. One would have to contend with this problem

even if she found a way of going beyond incompressible hydrodynamics (e.g. introducing

auxiliary conserved currents to cancel the problematic terms in (172)).

These problems (no continuity equation and the coefficients of ∂j∂jPi and ∂i∂jPj not

being independent) suggest that our entropic model is fundamentally incompatible with the

long distance effective description that is hydrodynamics. Some evidence for this can be

seen in our expression for the mean-field variance (83). To have energy variances grow more

slowly than squared energies, our E in the denominator had to be large. Similarly, requiring

|P| to be large is the most obvious way of ensuring that the growth of the momentum

covariance matrix is small. While not necessarily incompatible with hydrodynamics, this is

certainly incompatible with the linearization of it.
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FIG. 33: Energy and momentum profiles for the simulation that only has an x-axis. They

are shown up until the time when momentum values of ±0.9 form.

3. One more simulation

The most fundamental problem with our first model is that it only had well defined

decay times in one dimension. The only way to make this model sensible is to remove the

low energy phase from the density of states, allowing (83) to be strictly obeyed. This has

the effect of removing decay times altogether leading to infinitely long lived black holes. A

pressing question is whether the decay times of (170) remain comparable when moving from

one dimension to the next.

Since instantaneous extinction is a low energy effect, it suffices to use much easier initial

conditions than the ones in Figure 21. Its presence is also agnostic to whether the field theory

is strongly coupled or weakly coupled. Therefore, we may use the restricted density of states

expressions (152) that are valid for free fields. Unfortunately, a numerical investigation of

(170) shows that momenta grow very quickly even if they start from zero. This leads to a

time scale for satisfying ||P||∞ ≈ ||E||∞. After this time, momenta at various points are

comparable to the energies at those points and (152) is no longer valid. This time scale

is shorter than the black hole decay time and probably also shorter than the black hole

thermalization time that we defined earlier. Nevertheless, we present results showing that

this “momentum generation time” is similar in d = 1 and d = 2. There may be arguments
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involving the other time scales that follow from this.

Figure 33 shows the results for d = 1. In this case, the sites only have directions that

are aligned with the lattice so the d = 1 restricted density of states is used. Choices made

for (170) are ε = a = 0.1 and C = 1. Since we are only interested in short time dynamics,

the simplest forward difference Euler method has been used. It is clear that these nonlinear
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FIG. 34: On the left are slices of the E distributions along the x-axis. These are

spherically symmetric. On the right are Px distributions along the x-axis. These smoothly

approach a y-axis value of zero as one rotates the direction along which they are plotted.

The Py distributions behave in an equal and opposite way.

equations do not satisfy the maximum principle. The centre of the distribution splits into

left and right moving waves instead. The d = 2 simulation has also been done with no

extra small dimensions leading to the d = 2 formula (152). Even though the momentum

generation time is shorter in this case, Figure 34 shows that it still has the same order of

magnitude.

If more accurate expressions for the restricted density of states were to be found, it

would be interesting to return to the study of decay times for (170) using a better numerical

method. In addition to being more trustworthy than the estimates (108) and (111), these

decay times are also likely to be shorter and therefore easier to find numerically.
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VIII. CONCLUSION

Motivated by the universality of black hole physics in a variety of holographic models,

we studied general properties of field theories where excitations move throughout a lattice

purely due to statistical noise. This led to two interesting models: one in which only energy

is dynamical and one in which momentum is as well. Many shortcomings of the first model

appeared to be resolved by the second when the most basic calculations were carried out.

A more quantitative comparison between them is likely to be difficult because both models

require one to deal with nonlinear partial differential equations.

To elabourate on our first model (77), a so-called filtration equation, we found that it

made sense for high energies and predicted frozen dynamics for systems that are governed by

a Hagedorn density of states [2]. As input to the PDE, we chose a filtration function based

on the thermodynamics of N = 4 Super Yang-Mills, which have been famously explored

using the AdS / CFT correspondence [1, 8]. Additional references to the correspondence

have been made throughout the thesis, since we likened the solutions of (77) to the plasma

balls in confining gauge theories that were discovered numerically in 2005 [7]. To simplify the

analysis of our PDE, we removed the “small black hole” phase of SYM which is responsible

for a first order phase transition in the original background for holography. Because we

still saw solutions that were similar to plasma balls, our results suggest one of two things.

Either the assumptions about the phase transitions in [7] can be relaxed or it is true that

first order phase transitions in large field theories emerge whenever small field theories with

a Hagedorn phase are assembled on a lattice.

A detailed analysis of the model (77) revealed several problems. One is the aforementioned

difficulty of simulating a phase that has a convex microcanonical entropy. The resulting

equation is unstable for the same reason as the reverse heat equation. Even though the

reverse heat equation cannot be simulated starting with only Cauchy data, the situation

can be improved if further constraints on the solutions are imposed. A very physical one is

positivity [97]. Reverse heat equation methods developed recently [98, 99] have the potential

to fill in the missing phase in our numerics but this effort might not be justified in view of

the other problems. To see this, the decay times (108) and (111) derived for our model have

upper and lower bounds proportional to E2
F where EF is the critical energy of the plasma

ball. In a large N gauge theory, such an energy is proportional to N2 leading to a predicted
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decay time of O(N4). This conflicts with the O(N2) prediction of [7]. Another problem

with these time scales is that they contain extreme prefactors: Emin which is very small and

Eα−1
min which is very large. It is not possible to fix these values due to a vicious cycle that

plagues any realistic simulation. The requirement of a small Hagedorn energy EH � EF

forces the domain kept in the simulation to be very large — large enough to accommodate

the entire mass of the initial condition below EH. The large domain forces any distribution

with power law tails to have a very small Emin. In one dimension, our inability to find more

restrictive prefactors can be viewed as a purely mathematical problem.

In dimension two and higher, this is not the case. Our numerics and the theory of

Barenblatt profiles agreed on the behaviour of the plasma ball decay time. It hugs the

lower bound in (108) and (111) leading to a decay time of zero in the infinite volume limit.

The source of this pathology (a diverging diffusion constant) is clear but again not easy

to fix. The high energy parts of energy distributions, for which our model is valid, have

their dynamics contaminated by the low energy parts which necessarily appear in the same

distributions. This serious problem was the main motivation for our second model (170).

The second model consisted of PDEs for energy and momentum that resulted in faster

nonlinear diffusion, possibly consistent with the O(N2) plasma ball prediction. This system

also appeared not to suffer from instantaneous extinction but the only check that was possible

with out current understanding was limited to very short times. Exploring this nonlinear

model further requires one to derive a momentum restricted density of states that is valid

for small differences between E and |P|. In the linear regime, we attempted to strengthen

the model’s connection with holography by comparing the limit (172) to the equations for

hydrodynamics. The equations were found to have only superficial similarities and not

offer meaningul predictions for transport coefficients. As it makes no explicit reference

to a Lagrangian, our model seems to apply equally well to strongly coupled and weakly

coupled field theories. Conversely, the procedure for calculating transport coefficients at

weak coupling [100–102] is more difficult to carry out than the method revealed by the

fluid / gravity correspondence [80]. Any future method claiming to fix this aspect of our

model would be worthwhile to pursue, but it may be that the assumptions of (170) are

fundamentally incompatible with those of hydrodynamics.

Using two widely applicable stochastic models and some basic input about the Super

Yang-Mills theory, were were able to show that long lifetimes of black holes are associated
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with the Hagedorn density of states of a string worldsheet. Despite our calculation being

insufficient in practice, we showed that it is possible to study nonlinear diffusion, both

analytically and numerically as a means of predicting the time required for these black holes

to evaporate through Hawking radiation. Our second model in particular showed promise

as the number of large spatial dimensions was not restricted to one. Future studies can

focus on at least three broad areas: improving the restricted density of states, making the

model more consistent with hydrodynamics and finding high energy phenomena other than

black holes that are common to the many known examples of holography. Even though our

model is by no means safe from being replaced by other effective theories that may describe

holography more accurately, it is refreshing to see existence and uniqueness play important

roles in a situation where they are so often taken for granted.
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Appendix A: Cumbersome derivatives

In a few parts of the thesis we have dealt with discrete amounts of energy and momentum

denoted by ε and εe respectively. In order to convert energy and momentum to continuous

quantities we have had to differentiate expressions where ε appears inside the argument of

the density of states ρ. These calculations are collected here for reference.

In the calculation of (165), we had the quantity

X̃(a, ε) = ρ(E(x) + ε,P(x)− εe)ρ(E(x + ae)− ε,P(x + ae) + εe)

−ρ(E(x)− ε,P(x)− εe)ρ(E(x + ae) + ε,P(x + ae) + εe) (A1)

(actually there was a C multiplying this expression and a surface integral around the whole

thing) which we had to differentiate once. The steps involved are:

∂X̃

∂ε

∣∣∣∣∣
ε=0

= ρ+

(
∂ρ

∂E
− ej

∂ρ

∂Pj

)
+ ρ

(
−∂ρ+

∂E
+ ej

∂ρ+

∂Pj

)
−ρ+

(
− ∂ρ
∂E
− ej

∂ρ

∂Pj

)
− ρ

(
∂ρ+

∂E
+ ej

∂ρ+

∂Pj

)
= 2ρ+

∂ρ

∂E
− 2ρ

∂ρ+

∂E
.

The quantity that we had to differentiate in the calculation of (73) was the same as (A1)

except without the P dependence. Because the terms with an explicit P cancelled above,

the answer for this case is the same.

A similar quantity to this one came up in the calculation of (168):

Ỹ (a, ε) = −ρ(E(x) + ε,P(x)− εe)ρ(E(x + ae)− ε,P(x + ae) + εe)

−ρ(E(x)− ε,P(x)− εe)ρ(E(x + ae) + ε,P(x + ae) + εe) . (A2)

Since the middle sign is all that distinguishes (A2) from (A1), it is easy to see that the

energy pieces will cancel this time instead of the momentum pieces:

∂Ỹ

∂ε

∣∣∣∣∣
ε=0

= −ρ+

(
∂ρ

∂E
− ej

∂ρ

∂Pj

)
− ρ

(
−∂ρ+

∂E
+ ej

∂ρ+

∂Pj

)
−ρ+

(
− ∂ρ
∂E
− ej

∂ρ

∂Pj

)
− ρ

(
∂ρ+

∂E
+ ej

∂ρ+

∂Pj

)
= 2ejρ+

∂ρ

∂Pj
− 2ejρ

∂ρ+

∂Pj
.
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However, there is one more calculation we have to do: differentiating (A2) twice before

plugging in ε = 0.

∂2Ỹ

∂ε2

∣∣∣∣∣
ε=0

= − ∂

∂ε

[(
∂ρ

∂E
(E + ε,P− εe)− ej

∂ρ

∂Pj
(E + ε,P− εe)

)
ρ(E+ − ε,P+ + εe)

+ρ(E + ε,P− εe)

(
− ∂ρ
∂E

(E+ − ε,P+ + εe) + ej
∂ρ

∂Pj
(E+ − ε,P+ + εe)

)
+

(
− ∂ρ
∂E

(E − ε,P− εe)− ej
∂ρ

∂Pj
(E − ε,P− εe)

)
ρ(E+ + ε,P+ + εe)

+ρ(E − ε,P− εe)

(
∂ρ

∂E
(E+ + ε,P+ + εe) + ej

∂ρ

∂Pj
(E+ + ε,P+ + εe)

)]∣∣∣∣
ε=0

= −ρ+

(
∂2ρ

∂E2
− 2ej

∂2ρ

∂E∂Pj
+ ejek

∂2ρ

∂Pj∂Pk

)
− ρ

(
∂2ρ+

∂E2
− 2ej

∂2ρ+

∂E∂Pj
+ ejek

∂2ρ+

∂Pj∂Pk

)
−2

(
∂ρ

∂E
− ej

∂ρ

∂Pj

)(
−∂ρ+

∂E
+ ek

∂ρ+

∂Pk

)
− ρ+

(
∂2ρ

∂E2
+ 2ej

∂2ρ

∂E∂Pj
+ ejek

∂2ρ

∂Pj∂Pk

)
−ρ
(
∂2ρ+

∂E2
+ 2ej

∂2ρ+

∂E∂Pj
+ ejek

∂2ρ+

∂Pj∂Pk

)
− 2

(
− ∂ρ
∂E
− ej

∂ρ

∂Pj

)(
∂ρ+

∂E
+ ek

∂ρ+

∂Pk

)
= 2

(
∂ρ

∂E
− ej

∂ρ

∂Pj

)(
∂ρ+

∂E
− ek

∂ρ+

∂Pk

)
+ 2

(
∂ρ

∂E
+ ej

∂ρ

∂Pj

)(
∂ρ+

∂E
+ ek

∂ρ+

∂Pk

)
−2ρ+

(
∂2ρ

∂E2
+ ejek

∂2ρ

∂Pj∂Pk

)
− 2ρ

(
∂2ρ+

∂E2
+ ejek

∂2ρ+

∂Pj∂Pk

)

Appendix B: Discontinuous PDE solutions

When deriving our main bounds on black hole decay times, a key step was finding a

solution to ∂E
∂t

= ∂
∂x

(
θ(E − EH)∂E

∂x

)
. We argued that such a solution is given by

E(x, t) =

EF |x| < x∗(t)

F (x, t) |x| > x∗(t)

where F solves the heat equation and satisfies the mass conservation condition

(EF − EH)
dx∗(t)

dt
=
∂F

∂x
(x∗(t), t) .

Here, x∗(t) is defined by

F (x∗(t), t) = EH

A function constructed this way retains the intuitive properties that we expect a solution

to have but in some sense it is not a solution; it is discontinuous and derivatives acting on a
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discontinuous function have no meaning. We need to show that it is a solution in a precise

generalized sense. Consider the solution to the heat equation F . Since

∂F

∂t
− ∂2F

∂x2
= 0 , (B1)

it is clearly true that ∫ T

0

∫ ∞
−∞

[
∂F

∂t
− ∂2F

∂x2

]
ϕdxdt = 0 (B2)

where ϕ ∈ C∞0 (R× (0, T )) is a test function with compact support. The important part is

that (B1) and (B2) are not equivalent. If F were not differentiable, (B2) would still make

sense because ϕ is smooth and the derivatives can be shifted onto ϕ through integration

by parts. A function solving a differential equation but only inside an integral with a test

function like this is called a weak solution. The following two expressions

d

dt

∫ x∗

−x∗
ϕdx =

dx∗

dt
ϕ

∣∣∣∣x∗
−x∗

+

∫ x∗

−x∗

∂φ

∂t
dx

d

dt

∫ x∗

−x∗
Fϕdx = F

dx∗

dt
ϕ

∣∣∣∣x∗
−x∗

+

∫ x∗

−x∗

∂

∂t
(Fϕ)dx

= EH
dx∗

dt
ϕ

∣∣∣∣x∗
−x∗

+

∫ x∗

−x∗
F
∂ϕ

∂t
+ ϕ

∂F

∂t
dx
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which use Feynman’s trick of differentiating under the integral sign, will be useful in showing

that E is a weak solution.∫ T

0

∫ ∞
−∞

[
∂E

∂t
− ∂2Φ(E)

∂x2

]
ϕdxdt = −

∫ T

0

∫ ∞
−∞

E
∂ϕ

∂t
dxdt+

∫ T

0

∫ ∞
−∞

∂Φ(E)

∂x

∂ϕ

∂x
dxdt

= −
∫ T

0

∫
R\(−x∗,x∗)

E
∂ϕ
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dxdt−

∫ T

0

∫ x∗

−x∗
E
∂ϕ
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dxdt

+

∫ T

0

∫
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∂ϕ
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0
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dxdt
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0
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dxdt− EF
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0
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dxdt
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0
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0
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∫ T
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0
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0
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0
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+
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ϕdxdt
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0
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ϕ
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−x∗

+
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−x∗

∂2F
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ϕdxdt

=
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0
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−x∗
F
∂ϕ
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∂2F

∂x2
ϕdxdt+ EF
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−x∗

∂2F

∂x2
ϕdxdt+
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d

dt
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−x∗
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ϕ
∂F

∂t
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0
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−x∗

∂2F

∂x2
ϕdxdt−

∫ T

0

∫ x∗

−x∗
ϕ
∂F

∂t
dxdt

= 0
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Appendix C: Crank-Nicolson code

/* Changing float to double might help to avoid crashes. */

#include <stdio.h>

#include <stdlib.h>

#include <stdbool.h>

#include <math.h>

#define SMALL_ERROR 5e-7

#define TOO_MANY_LOOPS 30

/* Parameters for the initial condition. */

#define PMAX 200.0

#define EXP 1.3333

/* Ten magic constants handle the interpolation. */

#define EF 10.0

float c0, c1, c2, c3, c4, c5, c6, c7, c8, c9;

/* The maximum distance, the maximum time and the individual steps. */

float length, dx_min, dx_max, dt, max_time;

/* The number of sites in our discretized space. */

int n_s;

/* Arrays of this size that will be needed for the solution. */

float *energy;

float *new_energy;

float *jac_sub_diag;

float *jac_diag;

float *jac_sup_diag;

float *constant_part;
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float *diff;

float *xs;

float beta(float x) {

if (x < 0.5) {

return pow(x, -0.1);

} else if ((x > 0.5) && (x < 1.0)) {

return c0 * x * x + c1 * x + c2;

} else if ((x > 1.0) && (x < 0.9 * EF)) {

return c3 * x + c4;

} else if ((x > 0.9 * EF) && (x < EF)) {

return c5 * x * x + c6 * x + c7;

} else {

return c9 * pow(x - c8, -0.25);

}

}

float beta_pr(float x) {

if (x < 0.5) {

return -0.1 * pow(x, -1.1);

} else if ((x > 0.5) && (x < 1.0)) {

return 2.0 * c0 * x + c1;

} else if ((x > 1.0) && (x < 0.9 * EF)) {

return c3;

} else if ((x > 0.9 * EF) && (x < EF)) {

return 2.0 * c5 * x + c6;

} else {

return -0.25 * c9 * pow(x - c8, -1.25);

}

}

/* The tridiagonal matrix algorithm which fills result with the Ax = b solution
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* from Wikipedia.

*/

void tridiag(int num, float *sub_diag, float *diag, float *sup_diag, float *res) {

int i;

sup_diag[0] /= diag[0];

res[0] /= diag[0];

for (i = 1; i < num; i++) {

float factor = 1.0 / (diag[i] - sub_diag[i - 1] * sup_diag[i - 1]);

sup_diag[i] *= factor;

res[i] = (res[i] - sub_diag[i - 1] * res[i - 1]) * factor;

}

for (i = num - 2; i >= 0; i--) {

res[i] -= sup_diag[i] * res[i + 1];

}

}

void step_crank_nicolson() {

float *temp;

float error;

bool converged = false;

int i, j = 0;

/* Initial guess for Newton’s method. */

for (i = 0; i < n_s; i++) {

new_energy[i] = energy[i];

}

/* Do not recalculate this in every Newton iteration. */
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constant_part[0] = energy[0] - 0.5 * (dt / ((xs[1] - xs[0]) * (xs[1] - xs[0]))) *

(beta(energy[1]) - beta(energy[0]));

for (i = 1; i < (n_s - 1); i++) {

constant_part[i] = energy[i] - (dt / (xs[i + 1] - xs[i - 1])) *

(((beta(energy[i + 1]) - beta(energy[i])) / (xs[i + 1] - xs[i])) -

((beta(energy[i]) - beta(energy[i - 1])) / (xs[i] - xs[i - 1])));

}

constant_part[n_s - 1] = energy[n_s - 1] - 0.5 *

(dt / ((xs[n_s - 1] - xs[n_s - 2]) * (xs[n_s - 1] - xs[n_s - 2]))) *

(beta(energy[n_s - 2]) - beta(energy[n_s - 1]));

while (!converged) {

diff[0] = constant_part[0] - 0.5 * (dt / ((xs[1] - xs[0]) * (xs[1] - xs[0]))) *

(beta(new_energy[1]) - beta(new_energy[0])) - new_energy[0];

jac_diag[0] = 1.0 - 0.5 * dt * beta_pr(new_energy[0]) /

((xs[1] - xs[0]) * (xs[1] - xs[0]));

jac_sup_diag[0] = 0.5 * dt * beta_pr(new_energy[1]) /

((xs[1] - xs[0]) * (xs[1] - xs[0]));

for (i = 1; i < (n_s - 1); i++) {

diff[i] = constant_part[i] - (dt / (xs[i + 1] - xs[i - 1])) *

(((beta(new_energy[i + 1]) - beta(new_energy[i])) / (xs[i + 1] - xs[i])) -

((beta(new_energy[i]) - beta(new_energy[i - 1])) / (xs[i] - xs[i - 1]))) -

new_energy[i];

jac_sub_diag[i - 1] = -1.0 * dt * beta_pr(new_energy[i - 1]) *

(-1.0 / ((xs[i + 1] - xs[i - 1]) * (xs[i] - xs[i - 1])));

jac_diag[i] = 1.0 - (dt * beta_pr(new_energy[i]) / (xs[i + 1] - xs[i - 1])) *

((1.0 / (xs[i + 1] - xs[i])) + (1.0 / (xs[i] - xs[i - 1])));
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jac_sup_diag[i] = -1.0 * dt * beta_pr(new_energy[i + 1]) *

(-1.0 / ((xs[i + 1] - xs[i - 1]) * (xs[i + 1] - xs[i])));

}

diff[n_s - 1] = constant_part[n_s - 1] - 0.5 *

(dt / ((xs[n_s - 1] - xs[n_s - 2]) * (xs[n_s - 1] - xs[n_s - 2]))) *

(beta(new_energy[n_s - 2]) - beta(new_energy[n_s - 1])) - new_energy[n_s - 1];

jac_sub_diag[n_s - 2] = 0.5 * dt * beta_pr(new_energy[n_s - 2]) /

((xs[n_s - 1] - xs[n_s - 2]) * (xs[n_s - 1] - xs[n_s - 2]));

jac_diag[n_s - 1] = 1.0 - 0.5 * dt * beta_pr(new_energy[n_s - 1]) /

((xs[n_s - 1] - xs[n_s - 2]) * (xs[n_s - 1] - xs[n_s - 2]));

tridiag(n_s, jac_sub_diag, jac_diag, jac_sup_diag, diff);

error = 0.0;

j++;

for (i = 0; i < n_s; i++) {

error += diff[i] * diff[i];

new_energy[i] += diff[i];

}

if (((error / n_s) < SMALL_ERROR) || (j == TOO_MANY_LOOPS)) converged = true;

}

/* Enforce Neumann boundary conditions. */

new_energy[0] = new_energy[1];

new_energy[n_s - 1] = new_energy[n_s - 2];

temp = new_energy;

new_energy = energy;

energy = temp;
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}

void simulate_crank_nicolson() {

char *filename = malloc(10 * sizeof(char));

FILE *fp;

bool exit_loop = false;

int i, j = 0;

float t = 0.0;

float time_since_write = max_time;

/* If a certain simulation is proving very difficult, we might want to perform

* heuristics like increasing the timestep as time goes on and falling back to

* a backup copy of the energy if we accidentally make it too big.

*/

while (!exit_loop) {

step_crank_nicolson();

if (time_since_write > 10000.0 * dt) {

sprintf(filename, "f%d.dat", j);

fp = fopen(filename, "w");

fprintf(fp, "# t = %f\n", t);

for (i = 0; i < n_s; i++) {

fprintf(fp, "%f\t%f\n", log(1.0 + xs[i]), log(1.0 + energy[i]));

}

j++;

time_since_write = 0.0;

fclose(fp);

}
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/* We quit if time is up or the peak has reached the Hagedorn energy. */

if ((energy[0] < 1.0) || (t > max_time)) exit_loop = true;

t += dt;

time_since_write += dt;

}

printf("Final time: %f\n", t);

free(filename);

}

int main(int argc, char **argv) {

int i;

float x = 0.0;

float read_number;

bool reading = false;

FILE *fp;

/* Normally, the initial condition is hard coded. However, if a file

* is specified on the command line, the file will be read in order

* to determine the initial condition. This is ideal if the program

* runs for awhile and then crashes. The last successfully generated

* file can be passed to make the program pick up where it left off.

*/

if (argc > 1) {

reading = true;

fp = fopen(argv[1], "r");

fscanf(fp, "# t = %f", &read_number);

}
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/* Choose a, b, c such that ax^2 + bx + c agrees with the value and

* slope of x^(-1/10) when x = 0.5. It should also have a slope of

* -0.01 at x = 1.0.

*/

c0 = -0.01 + 0.1 * pow(2.0, -1.1);

c1 = -0.01 - 2.0 * c0;

c2 = pow(2.0, 0.1) - 0.5 * c1 - 0.25 * c0;

/* Now choose a, b such that ax + b agrees with the value and slope

* of the above at x = 1.0.

*/

c3 = -0.01;

c4 = c0 + c1 + c2 - c3;

/* Choose a, b, c such that ax^2 + bx + c agrees with the value and

* slope of the above at x = 0.9 * EF. It should also have half that

* value at x = EF.

*/

c5 = (-0.5 * (c3 * (0.9 * EF) + c4) - c3 * 0.1 * EF) / (0.1 * EF * 0.1 * EF);

c6 = c3 - 2.0 * c5 * (0.9 * EF);

c7 = 0.5 * (c3 * (0.9 * EF) + c4) - c6 * EF - c5 * EF * EF;

/* Finally choose a, b such that a(x - b)^(-1/4) agrees with the value

* and slope of the above at x = EF.

*/

c8 = EF + 0.25 * (c5 * EF * EF + c6 * EF + c7) / (2.0 * c5 * EF + c6);

c9 = (c5 * EF * EF + c6 * EF + c7) * pow(EF - c8, 0.25);

/* Makes the total mass enough to fit twice below the Hagedorn interface. */

length = PMAX * exp(gamma(0.5) + gamma(EXP - 0.5) - gamma (EXP));

/* Two things we pick are a "dt" that is "reasonably small" and a "dx" that

* fits 10 times between the inflection points. If we want the "dx" to vary

* with position, the above is really the minimum "dx" value. This example

* code is for performing a convergence test after a short amount of time so
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* we want the grid spacing to be uniform. The code will be rerun with "dx"

* multiplied by (1/2), (1/4), (1/8), etc. When we run this code to generate

* data, we will make the grid non-uniform and simulate for MUCH longer.

*/

dx_min = 0.1 * sqrt(1.0 / (1.0 + 2.0 * EXP));

dx_max = dx_min;

//dx_max = 0.01 * length;

dt = 0.001;

max_time = 100000.0 * dt;

//max_time = 999999.9;

n_s = 0;

/* The space step should vary linearly. */

while (x < length) {

n_s++;

x += dx_min + ((dx_max - dx_min) / length) * x;

}

/* Now that we know the number of sites, we can allocate the arrays that will

* be needed in the numerical solution. The numerical solution at a given time

* is "energy" and we have a copy to advance forward.

*/

energy = malloc(n_s * sizeof(float));

new_energy = malloc(n_s * sizeof(float));

/* The numbers in the Jacobian matrix used by Newton’s method. */

jac_sub_diag = malloc((n_s - 1) * sizeof(float));

jac_diag = malloc(n_s * sizeof(float));

jac_sup_diag = malloc((n_s - 1) * sizeof(float));

/* Other things that should be stored for Newton’s method. */
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constant_part = malloc(n_s * sizeof(float));

diff = malloc(n_s * sizeof(float));

/* This stores where our grid points are. */

xs = malloc(n_s * sizeof(float));

x = 0.0;

/* This sets up the initial condition and assigns the grid points. */

for (i = 0; i < n_s; i++) {

if (reading) {

fscanf(fp, "%f", &read_number);

fscanf(fp, "%f", &read_number);

energy[i] = exp(read_number) - 1.0;

} else {

energy[i] = PMAX * pow(1.0 / (1.0 + x * x), EXP);

}

x += dx_min + ((dx_max - dx_min) / length) * x;

xs[i] = x;

}

if (reading) fclose(fp);

/* Everything is set up so we can call the main loop. */

printf("L: %f, dx: %f-%f, dt: %f, sites: %d\n", length, dx_min, dx_max, dt, n_s);

simulate_crank_nicolson();

free(energy);

free(new_energy);

free(jac_sup_diag);

free(jac_diag);
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free(jac_sub_diag);

free(constant_part);

free(diff);

free(xs);

}
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