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. Thought to contrlbute mdst of the mass in the universe.

* Possibly in the form of WIMPs — Weakly Interacting Massive

Particles (that are very hard to detect).




e SuperCDMS currently in Soudan, MN.

* Planning to move to Sudbury, ON in near future.
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« Ultra-low cosmic ray background.

» 2km underground in the Vale/Inco Creighton mine.
 Deepest cleanroom in the world.

« Home to > 5 particle physics experiments.
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Cryogenic Dark Matter Search

Germanium target nucleus at mK temperatures.

Phonon (heat) signal causes superconducting to normal-
conducting transition in thin film.

lonization signal detected by semiconductor.

Ratio discriminates between electron recoil (background) and
nuclear recoil (WIMP).

.....

R,
L e



Scintillators

 |onization-phonon devices are currently the most sensitive dark
matter detectors but have a restricted range of targets.

» Understanding backgrounds and confirming a signal will require
more target nuclei — investigate cryogenic scintillation-phonon
detectors.

« A scintillator emits light when a particle interacts in it (WIMP,
gamma, neutron, etc).

« The number of photons “light-yield” is roughly proportional to
energy but the proportionality constant depends on
temperature.

Our goal is to characterize the evolution of light yield
and time constants as a function of temperature.
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« Gifford McMahon cryostat with
3.4K base temperature.

* Optically accessible.

* Temperature can be adjusted
with Joule heating.

Sample holder

Quartz windows
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The Experiment

“%0 20 40 60 80 100 120 140 160 180 200

Time (Us)

"« Scintillation light is

collected by
photomultiplier tubes.

e For a scintillation,
photons may arrive
exponentially in time.

* The crystal is excited
by events from a
radioactive source
that arrive randomly
in time.



Double-Coincidence

“Na— ? 10Ne+e +v+y

e Two 5mm x 10mm X
cstal 20mm BisGe3012
equidistant from the
Source source.

* Positron gives us
back-to-back 511keV
osal d@mmas in addition to
the 1.2MeV.




Definition of an Event

Step 1: PMT 1 sees a photon from the hot crystal at t1.

Step 2: PMT 2 sees a photon from the hot crystal at t2 - less
than 30ns later.

We now have a coincidence at t2.
Step 3: PMT 3 sees a photon from the cold crystal at t3.

Step 4: PMT 4 sees a photon from the cold crystal at t4 — less
than 900ns later.

We now have a coincidence at t4.

If t4 came less than 900ns after t2 we have a double
coincidence or an “event’”.

Data is collected starting at t4 (with a 10% pretrigger).

The time t1 is recorded as the start of the scintillation.



Cutting out Events

Pile-up BGO event at 3K

i

Amplitude (V)

Time (ps)
* A run may have pile-up (more than one
scintillation in a recorded event).

- Cut events where the mean arrival time of
photons relative to the start is too high.



Cutting out Events

Pretrigger BGO event at 3K

L/l

Amplitude (V)
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e The tail of a previous event can make an event
appear to have started very early.

- Cut events where the first photon arrived too
early in the pretrigger region.



Cutting out Events

Number of Photon Spectrum
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* Only keep events in the photopeak because it is
a well-defined population (guards against pile-

up from 1.2MeV photons, backscattering, etc).



Typical Average Pulse Fit (40K)

Pulse height (a.u.)

1; Main time Constant:( 14.7+0.1 ) u.s

Compare to 300ns at room temperature.

Time (Us)



Typical Spectrum Fit (5K)

160 . . .
140 | ]
120} 511keV photopeak / 1
100 | A, =1247.05+57.50
p, =65.11+1.29
w
hé o, =19.85 +1.01
S 8ot A, —4406.13+38.78 .
o py =127.04£0.07
“ o, =14.14 £0.10
60 I X =168.95 y
2 =105
40
: 20
.-.-. D " - |y T —
0 50 100 150 200

Number of Photons




Method

Set the sample temperature.

Wait for it to stabilize.

Read in 10,000 events (~12 hours).

Perform initial reduction (done on HPCVL grid).
Perform reanalysis (cuts).

Possibly change the acquisition window.
Repeat.



Light Yields vs T

Eﬁvolution of Light Yield with Temperature in BGO
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Time Constant (microseconds)

Time Constants vs T
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Conclusions
» Detecting dark matter is still an open problem.

* Low temperature scintillators can help solve |it.

* Queen's has a test facility for characterizing them

which has demonstrated success with BGO from
300K to 3.4K.

* Light yield for BGO increases by a factor of 5 for
gammas — significantly more than with alphas
(still being studied).

» Pulse lengthens by a factor of 1000 (like alphas).

e Positions available at SuperCDMS Queen's and
SNOLAB! http://www.sno.phy.queensu.ca
distefan@aueensu.ca



http://www.sno.phy.queensu.ca/
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Thanks for listening!
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